2000 character limit reached
Particle creation in left-handed metamaterial transmission lines (2401.16976v3)
Published 30 Jan 2024 in quant-ph
Abstract: Transmission lines are excellent examples of quantum simulators of quantum fields. By appropriately driving specific circuit elements, these devices can reproduce relativistic and quantum such as particle creation due to the non-adiabatic stimulation of the quantum vacuum. We investigate particle creation in left-handed transmission lines induced by the modulation of the Josephson energy in superconducting quantum interference devices. Our results show that, as a consequence of the peculiar dispersion relations present in these systems, particle production occurs with much more favorable conditions with respect to the usual right-handed transmission lines.
- M. D. Schwartz, Quantum field theory and the standard model (Cambridge university press, 2014).
- N. D. Birrell and P. C. W. Davies, Quantum fields in curved space (Cambridge university press, 1984).
- L. H. Ford, Reports on Progress in Physics 84, 116901 (2021).
- V. Dodonov, Physics 2, 67 (2020).
- C. K. Law, Physical Review Letters 73, 1931 (1994).
- V. V. Dodonov and A. B. Klimov, Physical Review A 53, 2664 (1996).
- M. Crocce, D. A. R. Dalvit, and F. D. Mazzitelli, Physical Review A 64, 013808 (2001).
- W. G. Unruh, Phys. Rev. D 14, 870 (1976).
- L. C. B. Crispino, A. Higuchi, and G. E. A. Matsas, Rev. Mod. Phys. 80, 787 (2008).
- C. J. Fewster, B. A. Juárez-Aubry, and J. Louko, Classical and Quantum Gravity 33, 165003 (2016).
- S. W. Hawking, Nature 248, 30 (1974).
- M. K. Parikh and F. Wilczek, Phys. Rev. Lett. 85, 5042 (2000).
- J. Steinhauer, Nature Physics 12, 959 (2016).
- I. M. Georgescu, S. Ashhab, and F. Nori, Rev. Mod. Phys. 86, 153 (2014).
- J. Q. You and F. Nori, Nature 474, 589 (2011).
- B. Yurke and J. S. Denker, Physical Review A 29, 1419 (1984).
- D. M. Pozar, Microwave engineering (John wiley & sons, 2011).
- U. Vool and M. Devoret, International Journal of Circuit Theory and Applications 45, 897 (2017).
- C. Sabín, Universe 8, 10.3390/universe8090452 (2022).
- A. Terrones and C. Sabín, Universe 7, 499 (2021).
- Z. Tian, J. Jing, and A. Dragan, Physical Review D 95, 125003 (2017).
- S. Lang and R. Schützhold, Physical Review D 100, 065003 (2019).
- Z. Tian and J. Du, The European Physical Journal C 79, 994 (2019).
- M. P. Blencowe and H. Wang, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 378, 20190224 (2020).
- D. R. Smith and N. Kroll, Phys. Rev. Lett. 85, 2933 (2000).
- A. A. Houck, J. B. Brock, and I. L. Chuang, Phys. Rev. Lett. 90, 137401 (2003).
- V. G. Veselago, Usp. fiz. nauk 92, 517 (1967).
- A. B. Kozyrev and D. W. Van Der Weide, Journal of Physics D: Applied Physics 41, 173001 (2008).
- A. Alizadeh, B. Rejaei, and M. Fardmanesh, IEEE Transactions on Applied Superconductivity 30, 1 (2020).
- D. J. Egger and F. K. Wilhelm, Physical Review Letters 111, 163601 (2013).
- A. Messinger, B. G. Taketani, and F. K. Wilhelm, Physical Review A 99, 032325 (2019).
- M. Wallquist, V. S. Shumeiko, and G. Wendin, Phys. Rev. B 74, 224506 (2006).
- C. K. Law, Physical Review A 51, 2537 (1995).
- C. Sabín, New Journal of Physics 20, 053028 (2018).
- C. M. Bender, S. Orszag, and S. A. Orszag, Advanced mathematical methods for scientists and engineers I: Asymptotic methods and perturbation theory, Vol. 1 (Springer Science & Business Media, 1999).