Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Besov and Paley-Wiener spaces, Moduli of continuity and Hardy-Steklov operators associated with the group $"ax+b"$ (2401.16734v1)

Published 30 Jan 2024 in math.FA

Abstract: We introduce and describe relations between Sobolev, Besov and Paley-Wiener spaces associated with three representations of the Lie group of affine transformations of the line. These representations are left and right regular representations and a representation in a space of functions defined on the half-line. The Besov spaces are described as interpolation spaces between respective Sobolev spaces in terms of the Petree's real interpolation method and in terms of a relevant moduli of continuity. By using a Laplace operators associated with these representations a scales of relevant Paley-Wiener spaces are developed and a corresponding $L_{2}$-approximation theory is constructed in which our Besov spaces appear as approximation spaces. Another description of our Besov spaces is given in terms of a frequency-localized Hilbert frames. A Jackson-type inequalities are also proven.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com