Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Moments of undersampled distributions: Application to the size of epidemics (2401.16652v2)

Published 25 Dec 2023 in physics.soc-ph and nlin.AO

Abstract: The total number of fatalities of an epidemic outbreak is a dramatic but extremely informative quantity. Knowledge of the statistics of this quantity allows the calculation of the mean total number of fatalities conditioned to the fact that the outbreak has surpassed a given number of fatalities, which is very relevant for risk assessment. However, the fact that the total number of fatalities seems to be characterized by a power-law tailed distribution with exponent (of the survival function) smaller than one poses an important theoretical difficulty, due to the non-existence of a mean value for such distributions. Cirillo and Taleb [Nature Phys. 16, 606 (2020)] propose a transformation from a so-called dual variable, which displays a power-law tail, to the total number of fatalities, which becomes bounded by the total world population. Here, we (i) show that such a transformation is ad hoc and unphysical; (ii) propose alternative transformations and distributions (also ad hoc); (iii) argue that the right framework for this problem is statistical physics, through finite-size scaling; and (iv) demonstrate that the real problem is not the non-existence of the mean value for power-law tailed distributions but the fact that the tail of the different theoretical distributions (which is what distinguishes one model from the other) is far from being well sampled with the available number of empirical data. Our results are also valid for many other hazards displaying (apparent) power-law tails in their size.

Summary

We haven't generated a summary for this paper yet.