Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Topological Detection of Phenomenological Bifurcations with Unreliable Kernel Densities (2401.16563v1)

Published 29 Jan 2024 in math.AT, math.DS, stat.ME, and stat.ML

Abstract: Phenomenological (P-type) bifurcations are qualitative changes in stochastic dynamical systems whereby the stationary probability density function (PDF) changes its topology. The current state of the art for detecting these bifurcations requires reliable kernel density estimates computed from an ensemble of system realizations. However, in several real world signals such as Big Data, only a single system realization is available -- making it impossible to estimate a reliable kernel density. This study presents an approach for detecting P-type bifurcations using unreliable density estimates. The approach creates an ensemble of objects from Topological Data Analysis (TDA) called persistence diagrams from the system's sole realization and statistically analyzes the resulting set. We compare several methods for replicating the original persistence diagram including Gibbs point process modelling, Pairwise Interaction Point Modelling, and subsampling. We show that for the purpose of predicting a bifurcation, the simple method of subsampling exceeds the other two methods of point process modelling in performance.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (44)
  1. Johannes Falk, Marc Mendler and Barbara Drossel “A minimal model of burst-noise induced bistability” In PLOS ONE 12.4 Public Library of Science (PLoS), 2017, pp. e0176410 DOI: 10.1371/journal.pone.0176410
  2. F. Schlogl “Chemical reaction models for non-equilibrium phase transitions” In Zeitschrift for Physik 253.2 Springer ScienceBusiness Media LLC, 1972, pp. 147–161 DOI: 10.1007/bf01379769
  3. DANIELE VENTURI, XIAOLIANG WAN and GEORGE EM KARNIADAKIS “Stochastic bifurcation analysis of Rayleigh–Bénard convection” In Journal of Fluid Mechanics 650 Cambridge University Press (CUP), 2010, pp. 391–413 DOI: 10.1017/s0022112009993685
  4. “Stochastic Bifurcation of a Strongly Non-Linear Vibro-Impact System with Coulomb Friction under Real Noise” In Symmetry 11.1 MDPI AG, 2018, pp. 4 DOI: 10.3390/sym11010004
  5. C.R. McInnes, D.G. Gorman and M.P. Cartmell “Enhanced vibrational energy harvesting using nonlinear stochastic resonance” In Journal of Sound and Vibration 318.4-5 Elsevier BV, 2008, pp. 655–662 DOI: 10.1016/j.jsv.2008.07.017
  6. Wei-Che Tai “Optimum Design of a New Tuned Inerter-Torsional-Mass-Damper Passive Vibration Control for Stochastically Motion-Excited Structures” In Journal of Vibration and Acoustics 142.1 American Society of Mechanical Engineers Digital Collection, 2020
  7. “Quantitative analysis of a transient dynamics of a gene regulatory network” In Physical Review E 98.6 American Physical Society (APS), 2018 DOI: 10.1103/physreve.98.062404
  8. “The stochastic bifurcation behaviour of speculative financial markets” In Physica A: Statistical Mechanics and its Applications 387.15 Elsevier BV, 2008, pp. 3837–3846 DOI: 10.1016/j.physa.2008.01.078
  9. “Deterministic analysis of stochastic bifurcations in multi-stable neurodynamical systems” In Biological Cybernetics 96.5 Springer ScienceBusiness Media LLC, 2007, pp. 487–496 DOI: 10.1007/s00422-007-0144-6
  10. “Deterministic and stochastic bifurcations in the Hindmarsh-Rose neuronal model” In Chaos: An Interdisciplinary Journal of Nonlinear Science 23.3 AIP Publishing, 2013, pp. 033125 DOI: 10.1063/1.4818545
  11. “Stochastic Bifurcations and Noise-Induced Chaos in 3D Neuron Model” In International Journal of Bifurcation and Chaos 26.12 World Scientific Pub Co Pte Lt, 2016, pp. 1630032 DOI: 10.1142/s0218127416300329
  12. Marc Mendler, Johannes Falk and Barbara Drossel “Analysis of stochastic bifurcations with phase portraits” In PloS one 13.4 Public Library of Science, 2018
  13. “Dynamical systems V: bifurcation theory and catastrophe theory” Springer Science & Business Media, 2013
  14. “Exact stationary solutions to Fokker-Planck-Kolmogorov equation for oscillators using a new splitting technique and a new class of stochastically equivalent systems” In Probabilistic Engineering Mechanics 45 Elsevier BV, 2016, pp. 22–30 DOI: 10.1016/j.probengmech.2016.02.003
  15. K.R. Schenk-Hoppe “Bifurcation scenarios of the noisy duffing-van der pol oscillator” In Nonlinear Dynamics 11.3 Springer Nature, 1996, pp. 255–274 DOI: 10.1007/bf00120720
  16. “Stochastic P-bifurcation and stochastic resonance in a noisy bistable fractional-order system” In Communications in Nonlinear Science and Numerical Simulation 41 Elsevier BV, 2016, pp. 104–117 DOI: 10.1016/j.cnsns.2016.05.001
  17. “Stochastic bifurcations in the nonlinear vibroimpact system with fractional derivative under random excitation” In Communications in Nonlinear Science and Numerical Simulation 42 Elsevier BV, 2017, pp. 62–72 DOI: 10.1016/j.cnsns.2016.05.004
  18. L. Arnold, N. Sri Namachchivaya and K.R. Schenk-HoppÉ “Toward and understanding of stochastic Hopf bifurcation” In International Journal of Bifurcation and Chaos 06.11 World Scientific Pub Co Pte Lt, 1996, pp. 1947–1975 DOI: 10.1142/s0218127496001272
  19. “Dynamical Systems” Springer Berlin Heidelberg, 1995 URL: https://www.ebook.de/de/product/7138684/ludwig_arnold_christopher_k_r_t_jones_konstantin_mischaikow_genevieve_raugel_dynamical_systems.html
  20. “Stochastic responses of a viscoelastic-impact system under additive and multiplicative random excitations” In Communications in Nonlinear Science and Numerical Simulation 35, 2016, pp. 166–176 DOI: https://doi.org/10.1016/j.cnsns.2015.11.008
  21. “Stochastic analysis of strongly non-linear elastic impact system with Coulomb friction excited by white noise” In Probabilistic Engineering Mechanics 61, 2020, pp. 103085 DOI: https://doi.org/10.1016/j.probengmech.2020.103085
  22. “Stochastic bifurcations and coherencelike resonance in a self-sustained bistable noisy oscillator” In Physical Review E 81.1 American Physical Society (APS), 2010 DOI: 10.1103/physreve.81.011106
  23. Pankaj Kumar, S. Narayanan and Sayan Gupta “Dynamics of stochastic vibro-impact oscillator with compliant contact force models” In International Journal of Non-Linear Mechanics 144, 2022, pp. 104086 DOI: https://doi.org/10.1016/j.ijnonlinmec.2022.104086
  24. “Stochastic bifurcation for a tumor–immune system with symmetric Lévy noise” In Physica A: Statistical Mechanics and its Applications 392.20 Elsevier BV, 2013, pp. 4739–4748 DOI: 10.1016/j.physa.2013.06.010
  25. “Estimating the Stochastic Bifurcation Structure of Cellular Networks” In PLoS Computational Biology 6.3 Public Library of Science (PLoS), 2010, pp. e1000699 DOI: 10.1371/journal.pcbi.1000699
  26. “Multistability in the lactose utilization network of Escherichia coli” In Nature 427.6976 Springer ScienceBusiness Media LLC, 2004, pp. 737–740 DOI: 10.1038/nature02298
  27. “Stochastic bifurcations in a bistable Duffing–Van der Pol oscillator with colored noise” In Physical Review E 83.5 American Physical Society (APS), 2011 DOI: 10.1103/physreve.83.056215
  28. Pankaj Kumar, S. Narayanan and Sayan Gupta “Stochastic bifurcations in a vibro-impact duffing-van der pol oscillator” In Nonlinear Dynamics 85.1, 2016, pp. 439–452 DOI: 10.1007/s11071-016-2697-1
  29. Pankaj Kumar, S. Narayanan and Sayan Gupta “Investigations on the bifurcation of a noisy duffing-van der pol oscillator” In Probabilistic Engineering Mechanics 45, 2016, pp. 70-8670–86 DOI: 10.1016/j.probengmech.2016.03.003
  30. J. Venkatramani, Sunetra Sarkar and Sayan Gupta “Intermittency in pitch-plunge aeroelastic systems explained through stochastic bifurcations” In Nonlinear Dynamics 92.3 Springer ScienceBusiness Media LLC, 2018, pp. 1225–1241 DOI: 10.1007/s11071-018-4121-5
  31. “A Topological Framework for Identifying Phenomenological Bifurcations in Stochastic Dynamical Systems”, 2023 DOI: 10.48550/ARXIV.2305.03118
  32. “Benefits and challenges of Big Data in healthcare: an overview of the European initiatives” In European Journal of Public Health 29.Supplement_3 Oxford University Press (OUP), 2019, pp. 23–27 DOI: 10.1093/eurpub/ckz168
  33. Eiji Aramaki, Sachiko Maskawa and Mizuki Morita “Twitter Catches The Flu: Detecting Influenza Epidemics using Twitter” In Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing Edinburgh, Scotland, UK.: Association for Computational Linguistics, 2011, pp. 1568–1576 URL: https://aclanthology.org/D11-1145
  34. “Network security defence system based on artificial intelligence and big data technology” In International Journal of High Performance Systems Architecture 10.3/4 Inderscience Publishers, 2021, pp. 140 DOI: 10.1504/ijhpsa.2021.121025
  35. Jianqing Fan, Fang Han and Han Liu “Challenges of Big Data analysis” In National Science Review 1.2 Oxford University Press (OUP), 2014, pp. 293–314 DOI: 10.1093/nsr/nwt032
  36. Sarit Agami and Robert J. Adler “Modeling of persistent homology” In Communications in Statistics - Theory and Methods 49.20 Informa UK Limited, 2019, pp. 4871–4888 DOI: 10.1080/03610926.2019.1615091
  37. Robert J. Adler and Sarit Agami “Modelling persistence diagrams with planar point processes, and revealing topology with bagplots” In Journal of Applied and Computational Topology 3.3 Springer ScienceBusiness Media LLC, 2019, pp. 139–183 DOI: 10.1007/s41468-019-00035-w
  38. “A random persistence diagram generator” In Statistics and Computing 32.5 Springer ScienceBusiness Media LLC, 2022 DOI: 10.1007/s11222-022-10141-y
  39. “Robust Topological Inference: Distance To a Measure and Kernel Distance” In Journal of Machine Learning Research 18.159, 2018, pp. 1–40 URL: http://jmlr.org/papers/v18/15-484.html
  40. Tamal Krishna Dey and Yusu Wang “Computational Topology for Data Analysis” Cambridge University Press, 2022 DOI: 10.1017/9781009099950
  41. Steve Y. Oudot “Persistence Theory: From Quiver Representations to Data Analysis”, Mathematical Surveys and Monographs Rhode Island: American Mathematical Society, 2015
  42. Adrian Baddeley “Spatial Point Patterns: Models and Statistics” In Lecture Notes in Mathematics Springer Berlin Heidelberg, 2012, pp. 49–114 DOI: 10.1007/978-3-642-33305-7˙3
  43. “Case studies in spatial point process modeling”, Lecture Notes in Statistics New York, NY: Springer, 2005
  44. Robert J. Adler, Sarit Agami and Pratyush Pranav “Modeling and replicating statistical topology and evidence for CMB nonhomogeneity” In Proceedings of the National Academy of Sciences 114.45 Proceedings of the National Academy of Sciences, 2017, pp. 11878–11883 DOI: 10.1073/pnas.1706885114

Summary

We haven't generated a summary for this paper yet.