Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

IEEE BigData 2023 Keystroke Verification Challenge (KVC) (2401.16559v1)

Published 29 Jan 2024 in cs.CV

Abstract: This paper describes the results of the IEEE BigData 2023 Keystroke Verification Challenge (KVC), that considers the biometric verification performance of Keystroke Dynamics (KD), captured as tweet-long sequences of variable transcript text from over 185,000 subjects. The data are obtained from two of the largest public databases of KD up to date, the Aalto Desktop and Mobile Keystroke Databases, guaranteeing a minimum amount of data per subject, age and gender annotations, absence of corrupted data, and avoiding excessively unbalanced subject distributions with respect to the considered demographic attributes. Several neural architectures were proposed by the participants, leading to global Equal Error Rates (EERs) as low as 3.33% and 3.61% achieved by the best team respectively in the desktop and mobile scenario, outperforming the current state of the art biometric verification performance for KD. Hosted on CodaLab, the KVC will be made ongoing to represent a useful tool for the research community to compare different approaches under the same experimental conditions and to deepen the knowledge of the field.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. X. Chen, Z. Li, S. Setlur, and W. Xu, “Exploring racial and gender disparities in voice biometrics,” Scientific Reports, vol. 12, no. 1, p. 3723, 2022.
  2. R. Tolosana, R. Vera-Rodriguez et al., “SVC-onGoing: Signature verification competition,” Pattern Recognition, vol. 127, 2022.
  3. R. Tolosana, R. Vera-Rodriguez, J. Fierrez, and J. Ortega-Garcia, “DeepSign: Deep On-Line Signature Verification,” IEEE Transactions on Biometrics, Behavior, and Identity Science, vol. 3, no. 2, pp. 229–239, 2021.
  4. O. C. Reyes, R. Vera-Rodriguez, P. Scully, and K. B. Ozanyan, “Analysis of spatio-temporal representations for robust footstep recognition with deep residual neural networks,” IEEE Transactions on Pattern Analysis and Machine Intelligence, no. 99, 2018.
  5. P. Delgado-Santos, R. Tolosana, R. Guest, R. Vera-Rodriguez, and J. Fierrez, “M-GaitFormer: Mobile biometric gait verification using Transformers,” Engineering Applications of Artificial Intelligence, vol. 125, p. 106682, 2023.
  6. P. Delgado-Santos, R. Tolosana, R. Guest, F. Deravi, and R. Vera-Rodriguez, “Exploring transformers for behavioural biometrics: A case study in gait recognition,” Pattern Recognition, vol. 143, p. 109798, 2023.
  7. G. Stragapede, R. Vera-Rodriguez, R. Tolosana, A. Morales, J. Fierrez, J. Ortega-Garcia, S. Rasnayaka, S. Seneviratne, V. Dissanayake, J. Liebers et al., “IJCB 2022 mobile behavioral biometrics competition (MobileB2C),” in Proc. IEEE International Joint Conference on Biometrics (IJCB), 2022.
  8. G. Stragapede, R. Vera-Rodriguez, R. Tolosana, and A. Morales, “BehavePassDB: public database for mobile behavioral biometrics and benchmark evaluation,” Pattern Recognition, vol. 134, p. 109089, 2023.
  9. J. Hernandez-Ortega, R. Daza, A. Morales, J. Fierrez, and J. Ortega-Garcia, “edBB: Biometrics and behavior for assessing remote education,” in Proc. AAAI Workshop on Artificial Intelligence for Education, 2019.
  10. S. Rasnayaka and T. Sim, “Who wants continuous authentication on mobile devices?” in Int. Conf. on Biometrics Theory, Applications and Systems (BTAS), 2018, pp. 1–9.
  11. A. Acien, A. Morales, J. V. Monaco, R. Vera-Rodriguez, and J. Fierrez, “TypeNet: Deep Learning Keystroke Biometrics,” IEEE Transactions on Biometrics, Behavior, and Identity Science, vol. 4, no. 1, pp. 57–70, 2022.
  12. A. Morales, J. Fierrez, R. Tolosana, J. Ortega-Garcia, J. Galbally, M. Gomez-Barrero, A. Anjos, and S. Marcel, “Keystroke biometrics ongoing competition,” IEEE Access, vol. 4, pp. 7736–7746, 2016.
  13. V. Dhakal, A. M. Feit, P. O. Kristensson, and A. Oulasvirta, “Observations on typing from 136 million keystrokes,” in Proc. CHI Conf. on Human Factors in Computing Systems, 2018.
  14. K. Palin, A. M. Feit, S. Kim, P. O. Kristensson, and A. Oulasvirta, “How do people type on mobile devices? Observations from a study with 37,000 volunteers,” in Proc. Int. Conf. on Human-Computer Interaction with Mobile Devices and Services, 2019.
  15. G. Stragapede, R. Vera-Rodriguez, R. Tolosana, A. Morales, N. Damer, J. Fierrez, and J. Ortega-Garcia, “Keystroke Verification Challenge (KVC): Biometric and Fairness Benchmark Evaluation,” arXiv:2311.06000, 2023.
  16. J. Fierrez-Aguilar, J. Ortega-Garcia, and J. Gonzalez-Rodriguez, “Target dependent score normalization techniques and their application to signature verification,” IEEE Trans. on Systems, Man & Cybernetics - Part C, vol. 35, no. 3, pp. 418–425, August 2005.
  17. J. Fierrez-Aguilar, D. Garcia-Romero, J. Ortega-Garcia, and J. Gonzalez-Rodriguez, “Adapted user-dependent multimodal biometric authentication exploiting general information,” Pattern Recognition Letters, vol. 26, no. 16, pp. 2628–2639, December 2005.
  18. N. González, E. P. Calot, J. S. Ierache, and W. Hasperué, “On the shape of timings distributions in free-text keystroke dynamics profiles,” Heliyon, vol. 7, no. 11, 2021.
  19. N. González, E. P. Calot, J. S. Ierache, W. and Hasperué, “Towards liveness detection in keystroke dynamics: Revealing synthetic forgeries,” Systems and Soft Computing, vol. 4, p. 200037, 2022.
  20. A. Morales, J. Fierrez, A. Acien, R. Tolosana, and I. Serna, “Setmargin loss applied to deep keystroke biometrics with circle packing interpretation,” Pattern Recognition, vol. 122, p. 108283, February 2022.
  21. N. González, “Ksdsld—a tool for keystroke dynamics synthesis & liveness detection,” Software Impacts, vol. 15, p. 100454, 2023.
  22. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in neural information processing systems, vol. 30, 2017.
  23. I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” arXiv:1711.05101, 2017.
  24. I. Loshchilov and F. Hutter, “SGDR: Stochastic gradient descent with warm restarts,” arXiv:1608.03983, 2016.
  25. J. Deng, J. Guo, N. Xue, and S. Zafeiriou, “Arcface: Additive angular margin loss for deep face recognition,” in Proc. of the Conf. on computer vision and pattern recognition, 2019, pp. 4690–4699.
  26. G. Stragapede, P. Delgado-Santos, R. Tolosana, R. Vera-Rodriguez, R. Guest, and A. Morales, “TypeFormer: Transformers for mobile keystroke biometrics,” arXiv:2212.13075, 2023.
  27. G. Stragapede, P. Delgado-Santos, R. Tolosana, R. Vera-Rodriguez, R. Guest, and A. Morales, “Mobile keystroke biometrics using transformers,” in 2023 Proc. of Int. Conf. on Automatic Face and Gesture Recognition, 2023, pp. 1–6.
  28. D. Senerath, S. Tharinda, M. Vishwajith, S. Rasnayaka, S. Wickramanayake, and D. Meedeniya, “BehaveFormer: A Framework with Spatio-Temporal Dual Attention Transformers for IMU enhanced Keystroke Dynamics,” arXiv:2307.11000, 2023.
  29. J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated recurrent neural networks on sequence modeling,” arXiv:1412.3555, 2014.
  30. S. Watanabe, “Tree-structured parzen estimator: Understanding its algorithm components and their roles for better empirical performance,” arXiv:2304.11127, 2023.
  31. Q. Yang, G. Peng, D. T. Nguyen, X. Qi, G. Zhou, Z. Sitová, P. Gasti, and K. S. Balagani, “A multimodal data set for evaluating continuous authentication performance in smartphones,” in Proc. of the ACM Conf. on Embedded Network Sensor Systems, 2014, pp. 358–359.
  32. A. Acien, A. Morales, J. Fierrez, R. Vera-Rodriguez, and O. Delgado-Mohatar, “BeCAPTCHA: Behavioral bot detection using touchscreen and mobile sensors benchmarked on HuMIdb,” Engineering Applications of Artificial Intelligence, vol. 98, p. 104058, 2021.
  33. F. Bergadano, D. Gunetti, and C. Picardi, “User authentication through keystroke dynamics,” ACM Trans. Inf. Syst. Secur., vol. 5, no. 4, p. 367–397, 2002.
  34. N. Gonzalez, E. P. Calot, and J. S. Ierache, “A replication of two free text keystroke dynamics experiments under harsher conditions,” in Int. Conf. of the Biometrics Special Interest Group (BIOSIG), 2016, pp. 1–6.
Citations (2)

Summary

We haven't generated a summary for this paper yet.