Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Green Adaptation of Real-Time Web Services for Industrial CPS within a Cloud Environment (2401.16387v1)

Published 29 Jan 2024 in cs.AR

Abstract: Managing energy efficiency under timing constraints is an interesting and big challenge. This work proposes an accurate power model in data centers for time-constrained servers in Cloud computing. This model, as opposed to previous approaches, does not only consider the workload assigned to the processing element, but also incorporates the need of considering the static power consumption and, even more interestingly, its dependency with temperature. The proposed model has been used in a multi-objective optimization environment in which the Dynamic Voltage and Frequency Scaling (DVFS) and workload assignment have been efficiently optimized.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. E. A. Lee, “CPS Foundations,” in Proceedings of the 47th Design Automation Conference, ser. DAC ’10.   New York, NY, USA: ACM, 2010, pp. 737–742.
  2. A. Banerjee, K. K. Venkatasubramanian, T. Mukherjee, and S. K. S. Gupta, “Ensuring safety, security, and sustainability of mission-critical cyber-physical systems.” Proceedings of the IEEE, vol. 100, no. 1, pp. 283–299, 2012. [Online]. Available: http://dblp.uni-trier.de/db/journals/pieee/pieee100.html
  3. A. Rowe, K. Lakshmanan, H. Zhu, and R. Rajkumar, “Rate-harmonized scheduling for saving energy,” in Proceedings of the 2008 Real-Time Systems Symposium, ser. RTSS ’08.   Washington, DC, USA: IEEE Computer Society, 2008, pp. 113–122. [Online]. Available: http://dx.doi.org/10.1109/RTSS.2008.50
  4. J. Chen and C. Kuo, “Energy-efficient scheduling for real-time systems on dynamic voltage scaling (DVS) platforms,” in 13th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA 2007), 21-24 August 2007, Daegu, Korea, 2007, pp. 28–38.
  5. J. Kim, H. Kim, K. Lakshmanan, and R. R. Rajkumar, “Parallel scheduling for cyber-physical systems: Analysis and case study on a self-driving car,” in Proceedings of the ACM/IEEE 4th International Conference on Cyber-Physical Systems, ser. ICCPS ’13.   New York, NY, USA: ACM, 2013, pp. 31–40. [Online]. Available: http://doi.acm.org/10.1145/2502524.2502530
  6. P. Huang, P. Kumar, G. Giannopoulou, and L. Thiele, “Energy efficient dvfs scheduling for mixed-criticality systems,” in Proceedings of the 14th International Conference on Embedded Software, ser. EMSOFT ’14.   New York, NY, USA: ACM, 2014, pp. 11:1–11:10. [Online]. Available: http://doi.acm.org/10.1145/2656045.2656057
  7. S. K. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela, S. van der Ster, and L. Stougie, “The preemptive uniprocessor scheduling of mixed-criticality implicit-deadline sporadic task systems.” in ECRTS, R. Davis, Ed.   IEEE Computer Society, 2012, pp. 145–154.
  8. L. Wang, G. von Laszewski, J. Dayal, and F. Wang, “Towards energy aware scheduling for precedence constrained parallel tasks in a cluster with DVFS,” in Cluster, Cloud and Grid Computing (CCGrid), 2010 10th IEEE/ACM International Conference on, May 2010, pp. 368–377.
  9. A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware resource allocation heuristics for efficient management of data centers for cloud computing,” Future Gener. Comput. Syst., vol. 28, no. 5, pp. 755–768, May 2012. [Online]. Available: http://dx.doi.org/10.1016/j.future.2011.04.017
  10. C. Wu, R. Chang, and H. Chan, “A green energy-efficient scheduling algorithm using the DVFS technique for cloud datacenters,” Future Generation Comp. Syst., vol. 37, pp. 141–147, 2014.
  11. S. Park, J. Kim, and G. Fox, “Effective real-time scheduling algorithm for cyber physical systems society,” Future Generation Comp. Syst., vol. 32, pp. 253–259, 2014.
  12. C. Mobius, W. Dargie, and A. Schill, “Power consumption estimation models for processors, virtual machines, and servers,” Parallel and Distributed Systems, IEEE Transactions on, vol. 25, no. 6, pp. 1600–1614, June 2014.
  13. M. M. Rafique and et al., “Power management for heterogeneous clusters: An experimental study,” in IGCC, Washington, DC, USA, 2011, pp. 1–8.
  14. R. I. Davis and A. Burns, “A survey of hard real-time scheduling for multiprocessor systems,” ACM Comput. Surv., vol. 43, no. 4, pp. 35:1–35:44, Oct. 2011. [Online]. Available: http://doi.acm.org/10.1145/1978802.1978814
  15. R. Schneider, D. Goswami, A. Masrur, M. Becker, and S. Chakraborty, “Multi-layered scheduling of mixed-criticality cyber-physical systems,” Journal of Systems Architecture (JSA), vol. 59, no. 10-D, 2013.
  16. L. Abeni, N. Manica, and L. Palopoli, “Efficient and robust probabilistic guarantees for real-time tasks,” J. Syst. Softw., vol. 85, no. 5, pp. 1147–1156, May 2012. [Online]. Available: http://dx.doi.org/10.1016/j.jss.2011.12.042
  17. T. Chantem, X. Hu, and M. Lemmon, “Generalized elastic scheduling for real-time tasks,” Computers, IEEE Transactions on, vol. 58, no. 4, pp. 480–495, 2009.
  18. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.
  19. A. Sayyad and H. Ammar, “Pareto-optimal search-based software engineering (posbse): A literature survey,” in Realizing Artificial Intelligence Synergies in Software Engineering (RAISE), 2013 2nd International Workshop on, May 2013, pp. 21–27.
Citations (17)

Summary

We haven't generated a summary for this paper yet.