Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal Control of Renewable Energy Communities subject to Network Peak Fees with Model Predictive Control and Reinforcement Learning Algorithms (2401.16321v2)

Published 29 Jan 2024 in eess.SY and cs.SY

Abstract: We propose in this paper an optimal control framework for renewable energy communities (RECs) equipped with controllable assets. Such RECs allow its members to exchange production surplus through an internal market. The objective is to control their assets in order to minimise the sum of individual electricity bills. These bills account for the electricity exchanged through the REC and with the retailers. Typically, for large companies, another important part of the bills are the costs related to the power peaks; in our framework, they are determined from the energy exchanges with the retailers. We compare rule-based control strategies with the two following control algorithms. The first one is derived from model predictive control techniques, and the second one is built with reinforcement learning techniques. We also compare variants of these algorithms that neglect the peak power costs. Results confirm that using policies accounting for the power peaks lead to a significantly lower sum of electricity bills and thus better control strategies at the cost of higher computation time. Furthermore, policies trained with reinforcement learning approaches appear promising for real-time control of the communities, where model predictive control policies may be computationally expensive in practice. These findings encourage pursuing the efforts toward development of scalable control algorithms, operating from a centralised standpoint, for renewable energy communities equipped with controllable assets.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com