Papers
Topics
Authors
Recent
Search
2000 character limit reached

High order conservative LDG-IMEX methods for the degenerate nonlinear non-equilibrium radiation diffusion problems

Published 29 Jan 2024 in math.NA and cs.NA | (2401.15941v1)

Abstract: In this paper, we develop a class of high-order conservative methods for simulating non-equilibrium radiation diffusion problems. Numerically, this system poses significant challenges due to strong nonlinearity within the stiff source terms and the degeneracy of nonlinear diffusion terms. Explicit methods require impractically small time steps, while implicit methods, which offer stability, come with the challenge to guarantee the convergence of nonlinear iterative solvers. To overcome these challenges, we propose a predictor-corrector approach and design proper implicit-explicit time discretizations. In the predictor step, the system is reformulated into a nonconservative form and linear diffusion terms are introduced as a penalization to mitigate strong nonlinearities. We then employ a Picard iteration to secure convergence in handling the nonlinear aspects. The corrector step guarantees the conservation of total energy, which is vital for accurately simulating the speeds of propagating sharp fronts in this system. For spatial approximations, we utilize local discontinuous Galerkin finite element methods, coupled with positive-preserving and TVB limiters. We validate the orders of accuracy, conservation properties, and suitability of using large time steps for our proposed methods, through numerical experiments conducted on one- and two-dimensional spatial problems. In both homogeneous and heterogeneous non-equilibrium radiation diffusion problems, we attain a time stability condition comparable to that of a fully implicit time discretization. Such an approach is also applicable to many other reaction-diffusion systems.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 3 likes about this paper.