Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data-Driven Strategies for Coping with Incomplete DVL Measurements (2401.15620v1)

Published 28 Jan 2024 in cs.RO, cs.AI, cs.SY, eess.SP, and eess.SY

Abstract: Autonomous underwater vehicles are specialized platforms engineered for deep underwater operations. Critical to their functionality is autonomous navigation, typically relying on an inertial navigation system and a Doppler velocity log. In real-world scenarios, incomplete Doppler velocity log measurements occur, resulting in positioning errors and mission aborts. To cope with such situations, a model and learning approaches were derived. This paper presents a comparative analysis of two cutting-edge deep learning methodologies, namely LiBeamsNet and MissBeamNet, alongside a model-based average estimator. These approaches are evaluated for their efficacy in regressing missing Doppler velocity log beams when two beams are unavailable. In our study, we used data recorded by a DVL mounted on an autonomous underwater vehicle operated in the Mediterranean Sea. We found that both deep learning architectures outperformed model-based approaches by over 16% in velocity prediction accuracy.

Citations (1)

Summary

We haven't generated a summary for this paper yet.