Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Diffusion-based Graph Generative Methods (2401.15617v2)

Published 28 Jan 2024 in cs.LG and cs.AI

Abstract: Being the most cutting-edge generative methods, diffusion methods have shown great advances in wide generation tasks. Among them, graph generation attracts significant research attention for its broad application in real life. In our survey, we systematically and comprehensively review on diffusion-based graph generative methods. We first make a review on three mainstream paradigms of diffusion methods, which are denoising diffusion probabilistic models, score-based genrative models, and stochastic differential equations. Then we further categorize and introduce the latest applications of diffusion models on graphs. In the end, we point out some limitations of current studies and future directions of future explorations. The summary of existing methods metioned in this survey is in https://github.com/zhejiangzhuque/Diffusion-based-Graph-Generative-Methods.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (144)
  1. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in Neural Information Processing Systems, Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Weinberger, Eds., vol. 27.   Curran Associates, Inc., 2014. [Online]. Available: https://proceedings.neurips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
  2. M. Mirza and S. Osindero, “Conditional generative adversarial nets,” 2014.
  3. M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative adversarial networks,” in Proceedings of the 34th International Conference on Machine Learning, ser. Proceedings of Machine Learning Research, D. Precup and Y. W. Teh, Eds., vol. 70.   PMLR, 06–11 Aug 2017, pp. 214–223. [Online]. Available: https://proceedings.mlr.press/v70/arjovsky17a.html
  4. D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” 2022.
  5. D. J. Rezende, S. Mohamed, and D. Wierstra, “Stochastic backpropagation and approximate inference in deep generative models,” in Proceedings of the 31st International Conference on Machine Learning, ser. Proceedings of Machine Learning Research, E. P. Xing and T. Jebara, Eds., vol. 32, no. 2.   Bejing, China: PMLR, 22–24 Jun 2014, pp. 1278–1286. [Online]. Available: https://proceedings.mlr.press/v32/rezende14.html
  6. C. Doersch, “Tutorial on variational autoencoders,” 2016.
  7. D. P. Kingma and M. Welling, “An introduction to variational autoencoders,” Found. Trends Mach. Learn., vol. 12, no. 4, p. 307–392, nov 2019. [Online]. Available: https://doi.org/10.1561/2200000056
  8. A. van den Oord, N. Kalchbrenner, and K. Kavukcuoglu, “Pixel recurrent neural networks,” in Proceedings of The 33rd International Conference on Machine Learning, ser. Proceedings of Machine Learning Research, M. F. Balcan and K. Q. Weinberger, Eds., vol. 48.   New York, New York, USA: PMLR, 20–22 Jun 2016, pp. 1747–1756. [Online]. Available: https://proceedings.mlr.press/v48/oord16.html
  9. L. Dinh, D. Krueger, and Y. Bengio, “Nice: Non-linear independent components estimation,” 2015.
  10. L. Dinh, J. Sohl-Dickstein, and S. Bengio, “Density estimation using real NVP,” in International Conference on Learning Representations, 2017. [Online]. Available: https://openreview.net/forum?id=HkpbnH9lx
  11. J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli, “Deep unsupervised learning using nonequilibrium thermodynamics,” in Proceedings of the 32nd International Conference on Machine Learning, ser. Proceedings of Machine Learning Research, F. Bach and D. Blei, Eds., vol. 37.   Lille, France: PMLR, 07–09 Jul 2015, pp. 2256–2265. [Online]. Available: https://proceedings.mlr.press/v37/sohl-dickstein15.html
  12. Y. Song and S. Ermon, “Generative modeling by estimating gradients of the data distribution,” in Advances in Neural Information Processing Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, Eds., vol. 32.   Curran Associates, Inc., 2019. [Online]. Available: https://proceedings.neurips.cc/paper_files/paper/2019/file/3001ef257407d5a371a96dcd947c7d93-Paper.pdf
  13. J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” in Advances in Neural Information Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, Eds., vol. 33.   Curran Associates, Inc., 2020, pp. 6840–6851. [Online]. Available: https://proceedings.neurips.cc/paper_files/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
  14. Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole, “Score-based generative modeling through stochastic differential equations,” in International Conference on Learning Representations, 2021. [Online]. Available: https://openreview.net/forum?id=PxTIG12RRHS
  15. C. Zang and F. Wang, “Moflow: An invertible flow model for generating molecular graphs,” in Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, ser. KDD ’20.   New York, NY, USA: Association for Computing Machinery, 2020, p. 617–626. [Online]. Available: https://doi.org/10.1145/3394486.3403104
  16. C. Shi, M. Xu, Z. Zhu, W. Zhang, M. Zhang, and J. Tang, “Graphaf: a flow-based autoregressive model for molecular graph generation,” in International Conference on Learning Representations, 2020. [Online]. Available: https://openreview.net/forum?id=S1esMkHYPr
  17. D. M. Anstine and O. Isayev, “Generative models as an emerging paradigm in the chemical sciences,” Journal of the American Chemical Society, vol. 145, no. 16, pp. 8736–8750, 2023, pMID: 37052978. [Online]. Available: https://doi.org/10.1021/jacs.2c13467
  18. J. Min and J. Chai, “Motion graphs++: A compact generative model for semantic motion analysis and synthesis,” ACM Trans. Graph., vol. 31, no. 6, nov 2012. [Online]. Available: https://doi.org/10.1145/2366145.2366172
  19. Mengchun Zhang, M. Qamar, Taegoo Kang, Y. Jung, Chenshuang Zhang, S.-H. Bae, and Chaoning Zhang, “A survey on graph diffusion models: Generative ai in science for molecule, protein and material,” 2023. [Online]. Available: https://rgdoi.net/10.13140/RG.2.2.26493.64480
  20. C. Liu, W. Fan, Y. Liu, J. Li, H. Li, H. Liu, J. Tang, and Q. Li, “Generative diffusion models on graphs: Methods and applications,” 2023.
  21. W. Fan, Y. Ma, D. Yin, J. Wang, J. Tang, and Q. Li, “Deep social collaborative filtering,” in Proceedings of the 13th ACM Conference on Recommender Systems, ser. RecSys ’19.   New York, NY, USA: Association for Computing Machinery, 2019, p. 305–313. [Online]. Available: https://doi.org/10.1145/3298689.3347011
  22. X. Wang, X. He, M. Wang, F. Feng, and T.-S. Chua, “Neural graph collaborative filtering,” in Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, ser. SIGIR’19.   New York, NY, USA: Association for Computing Machinery, 2019, p. 165–174. [Online]. Available: https://doi.org/10.1145/3331184.3331267
  23. T. Xie and J. C. Grossman, “Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties,” Phys. Rev. Lett., vol. 120, p. 145301, Apr 2018. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.120.145301
  24. Z. Xiong, D. Wang, X. Liu, F. Zhong, X. Wan, X. Li, Z. Li, X. Luo, K. Chen, H. Jiang, and M. Zheng, “Pushing the boundaries of molecular representation for drug discovery with the graph attention mechanism,” Journal of Medicinal Chemistry, vol. 63, no. 16, pp. 8749–8760, 2020, pMID: 31408336. [Online]. Available: https://doi.org/10.1021/acs.jmedchem.9b00959
  25. Z. Guo, K. Guo, B. Nan, Y. Tian, R. G. Iyer, Y. Ma, O. Wiest, X. Zhang, W. Wang, C. Zhang, and N. V. Chawla, “Graph-based molecular representation learning,” 2023.
  26. Y. Luo and S. Ji, “An autoregressive flow model for 3d molecular geometry generation from scratch,” in International Conference on Learning Representations, 2022. [Online]. Available: https://openreview.net/forum?id=C03Ajc-NS5W
  27. S. Luo, J. Guan, J. Ma, and J. Peng, “A 3d generative model for structure-based drug design,” in Advances in Neural Information Processing Systems, M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan, Eds., vol. 34.   Curran Associates, Inc., 2021, pp. 6229–6239. [Online]. Available: https://proceedings.neurips.cc/paper_files/paper/2021/file/314450613369e0ee72d0da7f6fee773c-Paper.pdf
  28. J. Zhu, Y. Xia, C. Liu, L. Wu, S. Xie, Y. Wang, T. Wang, T. Qin, W. Zhou, H. Li, H. Liu, and T.-Y. Liu, “Direct molecular conformation generation,” Transactions on Machine Learning Research, 2022. [Online]. Available: https://openreview.net/forum?id=lCPOHiztuw
  29. T. Masuda, M. Ragoza, and D. R. Koes, “Generating 3d molecular structures conditional on a receptor binding site with deep generative models,” 2020.
  30. G. Simm and J. M. Hernandez-Lobato, “A generative model for molecular distance geometry,” in Proceedings of the 37th International Conference on Machine Learning, ser. Proceedings of Machine Learning Research, H. D. III and A. Singh, Eds., vol. 119.   PMLR, 13–18 Jul 2020, pp. 8949–8958. [Online]. Available: https://proceedings.mlr.press/v119/simm20a.html
  31. E. Hoogeboom, V. G. Satorras, C. Vignac, and M. Welling, “Equivariant diffusion for molecule generation in 3D,” in Proceedings of the 39th International Conference on Machine Learning, ser. Proceedings of Machine Learning Research, vol. 162.   PMLR, 17–23 Jul 2022, pp. 8867–8887. [Online]. Available: https://proceedings.mlr.press/v162/hoogeboom22a.html
  32. H. Lin, Y. Huang, M. Liu, X. Li, S. Ji, and S. Z. Li, “Diffbp: Generative diffusion of 3d molecules for target protein binding,” 2022.
  33. M. Zhang, Z. Cai, L. Pan, F. Hong, X. Guo, L. Yang, and Z. Liu, “Motiondiffuse: Text-driven human motion generation with diffusion model,” 2022.
  34. M. Zhao, M. Liu, B. Ren, S. Dai, and N. Sebe, “Modiff: Action-conditioned 3d motion generation with denoising diffusion probabilistic models,” 2023.
  35. C. Vignac, I. Krawczuk, A. Siraudin, B. Wang, V. Cevher, and P. Frossard, “Digress: Discrete denoising diffusion for graph generation,” in International Conference on Learning Representations, 2023.
  36. H. Huang, L. Sun, B. Du, Y. Fu, and W. Lv, “Graphgdp: Generative diffusion processes for permutation invariant graph generation,” 2022.
  37. X. Chen, Y. Li, A. Zhang, and L. ping Liu, “Nvdiff: Graph generation through the diffusion of node vectors,” 2022.
  38. T. Luo, Z. Mo, and S. J. Pan, “Fast graph generation via spectral diffusion,” 2022.
  39. Y. Song and S. Ermon, “Improved techniques for training score-based generative models,” in Advances in Neural Information Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, Eds., vol. 33.   Curran Associates, Inc., 2020, pp. 12 438–12 448. [Online]. Available: https://proceedings.neurips.cc/paper_files/paper/2020/file/92c3b916311a5517d9290576e3ea37ad-Paper.pdf
  40. Y. Song, C. Durkan, I. Murray, and S. Ermon, “Maximum likelihood training of score-based diffusion models,” in Advances in Neural Information Processing Systems, M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan, Eds., vol. 34.   Curran Associates, Inc., 2021, pp. 1415–1428. [Online]. Available: https://proceedings.neurips.cc/paper_files/paper/2021/file/0a9fdbb17feb6ccb7ec405cfb85222c4-Paper.pdf
  41. M. Xu, L. Yu, Y. Song, C. Shi, S. Ermon, and J. Tang, “Geodiff: A geometric diffusion model for molecular conformation generation,” in International Conference on Learning Representations, 2022. [Online]. Available: https://openreview.net/forum?id=PzcvxEMzvQC
  42. J. Kim, J. Kim, and S. Choi, “Flame: Free-form language-based motion synthesis & editing,” 2023.
  43. S. Lyu, “Interpretation and generalization of score matching,” in Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, ser. UAI ’09.   Arlington, Virginia, USA: AUAI Press, 2009, p. 359–366.
  44. C. Gong, L. Wu, X. Liu, M. Ye, and qiang liu, “Diffusion-based molecule generation with informative prior bridges,” in NeurIPS 2022 AI for Science: Progress and Promises, 2022. [Online]. Available: https://openreview.net/forum?id=QagNEt9k8Vi
  45. C. Shi, S. Luo, M. Xu, and J. Tang, “Learning gradient fields for molecular conformation generation,” in Proceedings of the 38th International Conference on Machine Learning, ser. Proceedings of Machine Learning Research, vol. 139.   PMLR, 18–24 Jul 2021, pp. 9558–9568. [Online]. Available: https://proceedings.mlr.press/v139/shi21b.html
  46. S. Luo, C. Shi, M. Xu, and J. Tang, “Predicting molecular conformation via dynamic graph score matching,” in Advances in Neural Information Processing Systems, vol. 34.   Curran Associates, Inc., 2021, pp. 19 784–19 795. [Online]. Available: https://proceedings.neurips.cc/paper_files/paper/2021/file/a45a1d12ee0fb7f1f872ab91da18f899-Paper.pdf
  47. H. Huang, L. Sun, B. Du, and W. Lv, “Conditional diffusion based on discrete graph structures for molecular graph generation,” in NeurIPS 2022 Workshop on Score-Based Methods, 2022. [Online]. Available: https://openreview.net/forum?id=YD39Pw2HXBXM
  48. S. Lee, J. Jo, and S. J. Hwang, “Exploring chemical space with score-based out-of-distribution generation,” 2022.
  49. L. Huang, H. Zhang, T. Xu, and K.-C. Wong, “Mdm: Molecular diffusion model for 3d molecule generation,” 2022.
  50. C. Vignac, N. Osman, L. Toni, and P. Frossard, “Midi: Mixed graph and 3d denoising diffusion for molecule generation,” in ICLR 2023 - Machine Learning for Drug Discovery workshop, 2023. [Online]. Available: https://openreview.net/forum?id=M6Ifac3G4HK
  51. A. Morehead and J. Cheng, “Geometry-complete diffusion for 3d molecule generation,” in ICLR 2023 - Machine Learning for Drug Discovery workshop, 2023. [Online]. Available: https://openreview.net/forum?id=X-tLu3OUE-d
  52. L. Huang, T. Xu, Y. Yu, P. Zhao, K.-C. Wong, and H. Zhang, “A dual diffusion model enables 3d binding bioactive molecule generation and lead optimization given target pockets,” bioRxiv, 2023. [Online]. Available: https://www.biorxiv.org/content/early/2023/01/30/2023.01.28.526011
  53. A. Schneuing, Y. Du, C. Harris, A. Jamasb, I. Igashov, W. Du, T. Blundell, P. Lió, C. Gomes, M. Welling, M. Bronstein, and B. Correia, “Structure-based drug design with equivariant diffusion models,” 2022.
  54. J. Guan, W. W. Qian, X. Peng, Y. Su, J. Peng, and J. Ma, “3d equivariant diffusion for target-aware molecule generation and affinity prediction,” in The Eleventh International Conference on Learning Representations, 2023. [Online]. Available: https://openreview.net/forum?id=kJqXEPXMsE0
  55. G. Corso, H. Stärk, B. Jing, R. Barzilay, and T. S. Jaakkola, “Diffdock: Diffusion steps, twists, and turns for molecular docking,” in NeurIPS 2022 Workshop on Score-Based Methods, 2022. [Online]. Available: https://openreview.net/forum?id=fky3a3F80if
  56. S. Luo, Y. Su, X. Peng, S. Wang, J. Peng, and J. Ma, “Antigen-specific antibody design and optimization with diffusion-based generative models for protein structures,” in Advances in Neural Information Processing Systems, A. H. Oh, A. Agarwal, D. Belgrave, and K. Cho, Eds., 2022. [Online]. Available: https://openreview.net/forum?id=jSorGn2Tjg
  57. N. Anand and T. Achim, “Protein structure and sequence generation with equivariant denoising diffusion probabilistic models,” 2022.
  58. C. Shi, C. Wang, J. Lu, B. Zhong, and J. Tang, “Protein sequence and structure co-design with equivariant translation,” in The Eleventh International Conference on Learning Representations, 2023. [Online]. Available: https://openreview.net/forum?id=pRCMXcfdihq
  59. B. L. Trippe, J. Yim, D. Tischer, D. Baker, T. Broderick, R. Barzilay, and T. Jaakkola, “Diffusion probabilistic modeling of protein backbones in 3d for the motif-scaffolding problem,” 2023.
  60. I. Igashov, H. Stärk, C. Vignac, V. G. Satorras, P. Frossard, M. Welling, M. M. Bronstein, and B. Correia, “Equivariant 3d-conditional diffusion models for molecular linker design,” in NeurIPS 2022 AI for Science: Progress and Promises, 2022. [Online]. Available: https://openreview.net/forum?id=viZ4G1WZxh
  61. S. Kim, J. Woo, and W. Y. Kim, “Diffusion-based generative ai for exploring transition states from 2d molecular graphs,” 2023. [Online]. Available: https://doi.org/10.21203/rs.3.rs-2924237/v1
  62. N. T. Runcie and A. S. J. S. Mey, “Silvr: Guided diffusion for molecule generation,” 2023.
  63. B. Qiang, Y. Song, M. Xu, J. Gong, B. Gao, H. Zhou, W.-Y. Ma, and Y. Lan, “Coarse-to-fine: a hierarchical diffusion model for molecule generation in 3D,” in Proceedings of the 40th International Conference on Machine Learning, ser. Proceedings of Machine Learning Research, A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S. Sabato, and J. Scarlett, Eds., vol. 202.   PMLR, 23–29 Jul 2023, pp. 28 277–28 299. [Online]. Available: https://proceedings.mlr.press/v202/qiang23a.html
  64. H. Lin, Y. Huang, H. Zhang, L. Wu, S. Li, Z. Chen, and S. Z. Li, “Functional-group-based diffusion for pocket-specific molecule generation and elaboration,” 2023.
  65. K. Yi, B. Zhou, Y. Shen, P. Liò, and Y. G. Wang, “Graph denoising diffusion for inverse protein folding,” 2023.
  66. C. A. Grambow, H. Weir, N. L. Diamant, A. M. Tseng, T. Biancalani, G. Scalia, and K. V. Chuang, “Ringer: Rapid conformer generation for macrocycles with sequence-conditioned internal coordinate diffusion,” 2023.
  67. M. Xu, A. S. Powers, R. O. Dror, S. Ermon, and J. Leskovec, “Geometric latent diffusion models for 3D molecule generation,” in Proceedings of the 40th International Conference on Machine Learning, ser. Proceedings of Machine Learning Research, A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S. Sabato, and J. Scarlett, Eds., vol. 202.   PMLR, 23–29 Jul 2023, pp. 38 592–38 610. [Online]. Available: https://proceedings.mlr.press/v202/xu23n.html
  68. W. Zhang, X. Wang, J. Smith, J. Eaton, B. Rees, and Q. Gu, “Diffmol: 3d structured molecule generation with discrete denoising diffusion probabilistic models,” in ICML 2023 Workshop on Structured Probabilistic Inference & Generative Modeling, 2023. [Online]. Available: https://openreview.net/forum?id=x43ZyXJC9q
  69. C. Xu, H. Wang, W. Wang, P. Zheng, and H. Chen, “Geometric-facilitated denoising diffusion model for 3d molecule generation,” 2024.
  70. Z. Ren, Z. Pan, X. Zhou, and L. Kang, “Diffusion motion: Generate text-guided 3d human motion by diffusion model,” in ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2023, pp. 1–5.
  71. Y. Shafir, G. Tevet, R. Kapon, and A. H. Bermano, “Human motion diffusion as a generative prior,” 2023.
  72. R. Dabral, M. H. Mughal, V. Golyanik, and C. Theobalt, “Mofusion: A framework for denoising-diffusion-based motion synthesis,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2023, pp. 9760–9770.
  73. X. Chen, B. Jiang, W. Liu, Z. Huang, B. Fu, T. Chen, and G. Yu, “Executing your commands via motion diffusion in latent space,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2023, pp. 18 000–18 010.
  74. S. Alexanderson, R. Nagy, J. Beskow, and G. E. Henter, “Listen, denoise, action! audio-driven motion synthesis with diffusion models,” 2022.
  75. J. Tseng, R. Castellon, and K. Liu, “Edge: Editable dance generation from music,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2023, pp. 448–458.
  76. H. Ahn, E. V. Mascaro, and D. Lee, “Can we use diffusion probabilistic models for 3d motion prediction?” 2023.
  77. S. Raab, I. Leibovitch, P. Li, K. Aberman, O. Sorkine-Hornung, and D. Cohen-Or, “Modi: Unconditional motion synthesis from diverse data,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2023, pp. 13 873–13 883.
  78. B. Chopin, H. Tang, and M. Daoudi, “Bipartite graph diffusion model for human interaction generation,” 2023.
  79. L.-H. Chen, J. Zhang, Y. Li, Y. Pang, X. Xia, and T. Liu, “Humanmac: Masked motion completion for human motion prediction,” 2023.
  80. S. Saadatnejad, A. Rasekh, M. Mofayezi, Y. Medghalchi, S. Rajabzadeh, T. Mordan, and A. Alahi, “A generic diffusion-based approach for 3d human pose prediction in the wild,” in 2023 IEEE International Conference on Robotics and Automation (ICRA), 2023, pp. 8246–8253.
  81. J. Choi, D. Shim, and H. J. Kim, “Diffupose: Monocular 3d human pose estimation via denoising diffusion probabilistic model,” 2022.
  82. J. Sun and G. Chowdhary, “Towards globally consistent stochastic human motion prediction via motion diffusion,” 2023.
  83. G. Tevet, S. Raab, B. Gordon, Y. Shafir, D. Cohen-Or, and A. H. Bermano, “Human motion diffusion model,” 2022.
  84. H. Jang, S. Mo, and S. Ahn, “Diffusion probabilistic models for graph-structured prediction,” 2023.
  85. H. Wen, Y. Lin, Y. Xia, H. Wan, R. Zimmermann, and Y. Liang, “Diffstg: Probabilistic spatio-temporal graph forecasting with denoising diffusion models,” 2023.
  86. M. A. Shabani, S. Hosseini, and Y. Furukawa, “Housediffusion: Vector floorplan generation via a diffusion model with discrete and continuous denoising,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2023, pp. 5466–5475.
  87. X. Chen, J. He, X. Han, and L.-P. Liu, “Efficient and degree-guided graph generation via discrete diffusion modeling,” 2023.
  88. K.-H. Lee and G. J. Yun, “Microstructure reconstruction using diffusion-based generative models,” Mechanics of Advanced Materials and Structures, vol. 0, no. 0, pp. 1–19, 2023. [Online]. Available: https://doi.org/10.1080/15376494.2023.2198528
  89. S. Limnios, P. Selvaraj, M. Cucuringu, C. Maple, G. Reinert, and A. Elliott, “Sagess: Sampling graph denoising diffusion model for scalable graph generation,” 2023.
  90. J. Lei, C. Deng, B. Shen, L. Guibas, and K. Daniilidis, “Nap: Neural 3d articulation prior,” 2023.
  91. Z. Sun and Y. Yang, “Difusco: Graph-based diffusion solvers for combinatorial optimization,” 2023.
  92. W. Du, H. Zhang, Y. Du, Q. Meng, W. Chen, N. Zheng, B. Shao, and T.-Y. Liu, “SE(3) equivariant graph neural networks with complete local frames,” in Proceedings of the 39th International Conference on Machine Learning, ser. Proceedings of Machine Learning Research, vol. 162.   PMLR, 17–23 Jul 2022, pp. 5583–5608. [Online]. Available: https://proceedings.mlr.press/v162/du22e.html
  93. J. S. Lee, J. Kim, and P. M. Kim, “Proteinsgm: Score-based generative modeling for de novo protein design,” bioRxiv, 2023. [Online]. Available: https://www.biorxiv.org/content/early/2023/02/04/2022.07.13.499967
  94. M. Arts, V. G. Satorras, C.-W. Huang, D. Zuegner, M. Federici, C. Clementi, F. Noé, R. Pinsler, and R. van den Berg, “Two for one: Diffusion models and force fields for coarse-grained molecular dynamics,” 2023.
  95. C. Niu, Y. Song, J. Song, S. Zhao, A. Grover, and S. Ermon, “Permutation invariant graph generation via score-based generative modeling,” in Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics, ser. Proceedings of Machine Learning Research, S. Chiappa and R. Calandra, Eds., vol. 108.   PMLR, 26–28 Aug 2020, pp. 4474–4484. [Online]. Available: https://proceedings.mlr.press/v108/niu20a.html
  96. J. Jo, D. Kim, and S. J. Hwang, “Graph generation with destination-predicting diffusion mixture,” 2023.
  97. L. Yang, Z. Zhang, W. Zhang, and S. Hong, “Score-based graph generative modeling with self-guided latent diffusion,” 2023. [Online]. Available: https://openreview.net/forum?id=AykEgQNPJEK
  98. F. Wu and S. Z. Li, “Diffmd: A geometric diffusion model for molecular dynamics simulations,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37, no. 4, Jun. 2023, pp. 5321–5329. [Online]. Available: https://ojs.aaai.org/index.php/AAAI/article/view/25663
  99. B. Jing, E. Erives, P. Pao-Huang, G. Corso, B. Berger, and T. S. Jaakkola, “Eigenfold: Generative protein structure prediction with diffusion models,” in ICLR 2023 - Machine Learning for Drug Discovery workshop, 2023. [Online]. Available: https://openreview.net/forum?id=BgbRVzfQqFp
  100. H. Huang, L. Sun, B. Du, and W. Lv, “Learning joint 2d & 3d diffusion models for complete molecule generation,” 2023.
  101. Z. Qiao, W. Nie, A. Vahdat, T. F. M. I. au2, and A. Anandkumar, “State-specific protein-ligand complex structure prediction with a multi-scale deep generative model,” 2023.
  102. L. Wen and X. Wei, “Hyperbolic graph diffusion model for molecule generation,” 2023.
  103. S. An, H. Lee, J. Jo, S. Lee, and S. J. Hwang, “Diffusionnag: Task-guided neural architecture generation with diffusion models,” 2023.
  104. Y. Qin, H. Wu, W. Ju, X. Luo, and M. Zhang, “A diffusion model for poi recommendation,” 2023.
  105. V. G. Satorras, E. Hoogeboom, and M. Welling, “E(n) equivariant graph neural networks,” in Proceedings of the 38th International Conference on Machine Learning, ser. Proceedings of Machine Learning Research, vol. 139.   PMLR, 18–24 Jul 2021, pp. 9323–9332. [Online]. Available: https://proceedings.mlr.press/v139/satorras21a.html
  106. K. Schütt, P.-J. Kindermans, H. E. Sauceda Felix, S. Chmiela, A. Tkatchenko, and K.-R. Müller, “Schnet: A continuous-filter convolutional neural network for modeling quantum interactions,” in Advances in Neural Information Processing Systems, vol. 30.   Curran Associates, Inc., 2017. [Online]. Available: https://proceedings.neurips.cc/paper_files/paper/2017/file/303ed4c69846ab36c2904d3ba8573050-Paper.pdf
  107. J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, “Neural message passing for quantum chemistry,” in Proceedings of the 34th International Conference on Machine Learning, ser. Proceedings of Machine Learning Research, vol. 70.   PMLR, 06–11 Aug 2017, pp. 1263–1272. [Online]. Available: https://proceedings.mlr.press/v70/gilmer17a.html
  108. B. Jing, G. Corso, J. Chang, R. Barzilay, and T. S. Jaakkola, “Torsional diffusion for molecular conformer generation,” in Advances in Neural Information Processing Systems, 2022. [Online]. Available: https://openreview.net/forum?id=w6fj2r62r_H
  109. M. Liu, Y. Luo, K. Uchino, K. Maruhashi, and S. Ji, “Generating 3D molecules for target protein binding,” in Proceedings of the 39th International Conference on Machine Learning, ser. Proceedings of Machine Learning Research, K. Chaudhuri, S. Jegelka, L. Song, C. Szepesvari, G. Niu, and S. Sabato, Eds., vol. 162.   PMLR, 17–23 Jul 2022, pp. 13 912–13 924. [Online]. Available: https://proceedings.mlr.press/v162/liu22m.html
  110. X. Peng, S. Luo, J. Guan, Q. Xie, J. Peng, and J. Ma, “Pocket2Mol: Efficient molecular sampling based on 3D protein pockets,” in Proceedings of the 39th International Conference on Machine Learning, ser. Proceedings of Machine Learning Research, K. Chaudhuri, S. Jegelka, L. Song, C. Szepesvari, G. Niu, and S. Sabato, Eds., vol. 162.   PMLR, 17–23 Jul 2022, pp. 17 644–17 655. [Online]. Available: https://proceedings.mlr.press/v162/peng22b.html
  111. L. Hu, M. L. Benson, R. D. Smith, M. G. Lerner, and H. A. Carlson, “Binding moad (mother of all databases),” Proteins: Structure, Function, and Bioinformatics, vol. 60, no. 3, p. 333—340, August 2005. [Online]. Available: https://doi.org/10.1002/prot.20512
  112. M. R. Masters, A. H. Mahmoud, Y. Wei, and M. A. Lill, “Deep learning model for efficient protein–ligand docking with implicit side-chain flexibility,” Journal of Chemical Information and Modeling, vol. 63, no. 6, pp. 1695–1707, 2023, pMID: 36916514. [Online]. Available: https://doi.org/10.1021/acs.jcim.2c01436
  113. S. Nakata, Y. Mori, and S. Tanaka, “End-to-end protein-ligand complex structure generation with diffusion-based generative models,” BMC Bioinformatics, vol. 24, no. 1, p. 233, 2023. [Online]. Available: https://doi.org/10.1186/s12859-023-05354-5
  114. O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, N. Navab, J. Hornegger, W. M. Wells, and A. F. Frangi, Eds.   Cham: Springer International Publishing, 2015, pp. 234–241.
  115. A. Gulati, J. Qin, C.-C. Chiu, N. Parmar, Y. Zhang, J. Yu, W. Han, S. Wang, Z. Zhang, Y. Wu, and R. Pang, “Conformer: Convolution-augmented Transformer for Speech Recognition,” in Proc. Interspeech 2020, 2020, pp. 5036–5040. [Online]. Available: http://dx.doi.org/10.21437/Interspeech.2020-3015
  116. P. Dhariwal, H. Jun, C. Payne, J. W. Kim, A. Radford, and I. Sutskever, “Jukebox: A generative model for music,” 2020.
  117. S. Huang, Z. Wang, P. Li, B. Jia, T. Liu, Y. Zhu, W. Liang, and S.-C. Zhu, “Diffusion-based generation, optimization, and planning in 3d scenes,” 2023.
  118. L. Kong, J. Cui, H. Sun, Y. Zhuang, B. A. Prakash, and C. Zhang, “Autoregressive diffusion model for graph generation,” 2023. [Online]. Available: https://openreview.net/forum?id=98J48HZXxd5
  119. R. Yang, Y. Yang, F. Zhou, and Q. Sun, “Directional diffusion models for graph representation learning,” 2023.
  120. X. Chen, B. Lei, C.-M. Pun, and S. Wang, “Brain diffuser: An end-to-end brain image to brain network pipeline,” 2023.
  121. W. Lu, N. A. Lee, and M. J. Buehler, “Modeling and design of heterogeneous hierarchical bioinspired spider web structures using generative deep learning and additive manufacturing,” 2023.
  122. C. A. Lipinski, F. Lombardo, B. W. Dominy, and P. J. Feeney, “Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings,” Advanced Drug Delivery Reviews, vol. 23, no. 1, pp. 3–25, 1997, in Vitro Models for Selection of Development Candidates.
  123. J. J. Irwin, T. Sterling, M. M. Mysinger, E. S. Bolstad, and R. G. Coleman, “Zinc: A free tool to discover chemistry for biology,” Journal of Chemical Information and Modeling, vol. 52, no. 7, pp. 1757–1768, 2012, pMID: 22587354.
  124. R. Ramakrishnan, P. O. Dral, M. Rupp, and O. A. Von Lilienfeld, “Quantum chemistry structures and properties of 134 kilo molecules,” Scientific data, vol. 1, no. 1, pp. 1–7, 2014.
  125. S. Axelrod and R. Gomez-Bombarelli, “Geom, energy-annotated molecular conformations for property prediction and molecular generation,” Scientific Data, vol. 9, no. 1, p. 185, 2022.
  126. P. G. Francoeur, T. Masuda, J. Sunseri, A. Jia, R. B. Iovanisci, I. Snyder, and D. R. Koes, “Three-dimensional convolutional neural networks and a cross-docked data set for structure-based drug design,” Journal of Chemical Information and Modeling, vol. 60, no. 9, pp. 4200–4215, 2020, pMID: 32865404.
  127. J. Yang, A. Roy, and Y. Zhang, “BioLiP: a semi-manually curated database for biologically relevant ligand–protein interactions,” Nucleic Acids Research, vol. 41, no. D1, pp. D1096–D1103, 10 2012.
  128. Z. Liu, M. Su, L. Han, J. Liu, Q. Yang, Y. Li, and R. Wang, “Forging the basis for developing protein–ligand interaction scoring functions,” Accounts of Chemical Research, vol. 50, no. 2, pp. 302–309, 2017, pMID: 28182403.
  129. C. Ionescu, D. Papava, V. Olaru, and C. Sminchisescu, “Human3.6m: Large scale datasets and predictive methods for 3d human sensing in natural environments,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 36, no. 7, pp. 1325–1339, 2014.
  130. N. Mahmood, N. Ghorbani, N. F. Troje, G. Pons-Moll, and M. J. Black, “Amass: Archive of motion capture as surface shapes,” in Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), October 2019.
  131. C. Guo, X. Zuo, S. Wang, S. Zou, Q. Sun, A. Deng, M. Gong, and L. Cheng, “Action2motion: Conditioned generation of 3d human motions,” in Proceedings of the 28th ACM International Conference on Multimedia, ser. MM ’20.   New York, NY, USA: Association for Computing Machinery, 2020, p. 2021–2029.
  132. S. Zou, X. Zuo, Y. Qian, S. Wang, C. Xu, M. Gong, and L. Cheng, “3d human shape reconstruction from a polarization image,” in Computer Vision – ECCV 2020, A. Vedaldi, H. Bischof, T. Brox, and J.-M. Frahm, Eds.   Cham: Springer International Publishing, 2020, pp. 351–368.
  133. S. Zou, X. Zuo, Y. Qian, S. Wang, C. Guo, C. Xu, M. Gong, and L. Cheng, “Polarization human shape and pose dataset,” 2020.
  134. C. Guo, S. Zou, X. Zuo, S. Wang, W. Ji, X. Li, and L. Cheng, “Generating diverse and natural 3d human motions from text,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2022, pp. 5152–5161.
  135. M. Plappert, C. Mandery, and T. Asfour, “The kit motion-language dataset,” Big Data, vol. 4, no. 4, pp. 236–252, 2016, pMID: 27992262.
  136. A. R. Punnakkal, A. Chandrasekaran, N. Athanasiou, A. Quiros-Ramirez, and M. J. Black, “Babel: Bodies, action and behavior with english labels,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2021, pp. 722–731.
  137. T. von Marcard, R. Henschel, M. J. Black, B. Rosenhahn, and G. Pons-Moll, “Recovering accurate 3d human pose in the wild using imus and a moving camera,” in Proceedings of the European Conference on Computer Vision (ECCV), September 2018.
  138. Y. Ji, F. Xu, Y. Yang, F. Shen, H. T. Shen, and W.-S. Zheng, “A large-scale rgb-d database for arbitrary-view human action recognition,” in Proceedings of the 26th ACM International Conference on Multimedia, ser. MM ’18.   New York, NY, USA: Association for Computing Machinery, 2018, p. 1510–1518.
  139. A. Shahroudy, J. Liu, T.-T. Ng, and G. Wang, “Ntu rgb+d: A large scale dataset for 3d human activity analysis,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016.
  140. R. Li, S. Yang, D. A. Ross, and A. Kanazawa, “Ai choreographer: Music conditioned 3d dance generation with aist++,” in Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), October 2021, pp. 13 401–13 412.
  141. Y. Ferstl and R. McDonnell, “ninvestigating the use of recurrent motion modelling for speech gesture generatio,” in Proceedings of the 18th International Conference on Intelligent Virtual Agents, ser. IVA ’18.   New York, NY, USA: Association for Computing Machinery, 2018, p. 93–98.
  142. S. Ghorbani, Y. Ferstl, D. Holden, N. F. Troje, and M.-A. Carbonneau, “Zeroeggs: Zero-shot example-based gesture generation from speech,” Computer Graphics Forum, vol. 42, no. 1, pp. 206–216, 2023.
  143. L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin, C. Zhang, S. Agarwal, K. Slama, A. Ray, J. Schulman, J. Hilton, F. Kelton, L. Miller, M. Simens, A. Askell, P. Welinder, P. F. Christiano, J. Leike, and R. Lowe, “Training language models to follow instructions with human feedback,” in Advances in Neural Information Processing Systems, S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, Eds., vol. 35.   Curran Associates, Inc., 2022, pp. 27 730–27 744. [Online]. Available: https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
  144. OpenAI, “Gpt-4 technical report,” 2023.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Hongyang Chen (61 papers)
  2. Can Xu (98 papers)
  3. Lingyu Zheng (1 paper)
  4. Qiang Zhang (466 papers)
  5. Xuemin Lin (86 papers)