Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Completeness of uniformly discrete translates in $L^p(\mathbb{R})$ (2401.15588v2)

Published 28 Jan 2024 in math.CA and math.FA

Abstract: We construct a real sequence ${\lambda_n}_{n=1}{\infty}$ satisfying $\lambda_n = n + o(1)$, and a Schwartz function $f$ on $\mathbb{R}$, such that for any $N$ the system of translates ${f(x - \lambda_n)}$, $n > N$, is complete in the space $Lp(\mathbb{R})$ for every $p>1$. The same system is also complete in a wider class of Banach function spaces on $\mathbb{R}$.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com