Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Anomaly Detection of Particle Orbit in Accelerator using LSTM Deep Learning Technology (2401.15543v1)

Published 28 Jan 2024 in cs.LG and physics.acc-ph

Abstract: A stable, reliable, and controllable orbit lock system is crucial to an electron (or ion) accelerator because the beam orbit and beam energy instability strongly affect the quality of the beam delivered to experimental halls. Currently, when the orbit lock system fails operators must manually intervene. This paper develops a Machine Learning based fault detection methodology to identify orbit lock anomalies and notify accelerator operations staff of the off-normal behavior. Our method is unsupervised, so it does not require labeled data. It uses Long-Short Memory Networks (LSTM) Auto Encoder to capture normal patterns and predict future values of monitoring sensors in the orbit lock system. Anomalies are detected when the prediction error exceeds a threshold. We conducted experiments using monitoring data from Jefferson Lab's Continuous Electron Beam Accelerator Facility (CEBAF). The results are promising: the percentage of real anomalies identified by our solution is 68.6%-89.3% using monitoring data of a single component in the orbit lock control system. The accuracy can be as high as 82%.

Citations (1)

Summary

We haven't generated a summary for this paper yet.