Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Golay Complementary Sequences of Arbitrary Length and Asymptotic Existence of Hadamard Matrices (2401.15381v1)

Published 27 Jan 2024 in cs.IT and math.IT

Abstract: In this work, we construct $4$-phase Golay complementary sequence (GCS) set of cardinality $2{3+\lceil \log_2 r \rceil}$ with arbitrary sequence length $n$, where the $10{13}$-base expansion of $n$ has $r$ nonzero digits. Specifically, the GCS octets (eight sequences) cover all the lengths no greater than $10{13}$. Besides, based on the representation theory of signed symmetric group, we construct Hadamard matrices from some special GCS to improve their asymptotic existence: there exist Hadamard matrices of order $2t m$ for any odd number $m$, where $t = 6\lfloor \frac{1}{40}\log_{2}m\rfloor + 10$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. C.-C. Tseng and C. Liu, “Complementary sets of sequences,” IEEE Transactions on Information theory, vol. 18, no. 5, pp. 644–652, 1972.
  2. A. Pezeshki, A. R. Calderbank, W. Moran, and S. D. Howard, “Doppler resilient Golay complementary waveforms,” IEEE Transactions on Information Theory, vol. 54, no. 9, pp. 4254–4266, 2008.
  3. P. Spasojevic and C. N. Georghiades, “Complementary sequences for ISI channel estimation,” IEEE Transactions on Information Theory, vol. 47, no. 3, pp. 1145–1152, 2001.
  4. J. A. Davis and J. Jedwab, “Peak-to-mean power control in OFDM, Golay complementary sequences, and Reed-Muller codes,” IEEE Transactions on information theory, vol. 45, no. 7, pp. 2397–2417, 1999.
  5. C.-Y. Pai and C.-Y. Chen, “Two-dimensional Golay complementary array pairs/sets with bounded row and column sequence paprs,” IEEE Transactions on Communications, 2022.
  6. F. Li, Y. Jiang, C. Du, and X. Wang, “Construction of Golay complementary matrices and its applications to MIMO omnidirectional transmission,” IEEE Transactions on Signal Processing, vol. 69, pp. 2100–2113, 2021.
  7. M. A. Girnyk and S. O. Petersson, “Efficient cell-specific beamforming for large antenna arrays,” IEEE Transactions on Communications, vol. 69, no. 12, pp. 8429–8442, 2021.
  8. C.-Y. Chen, “A novel construction of complementary sets with flexible lengths based on Boolean functions,” IEEE Communications Letters, vol. 22, no. 2, pp. 260–263, 2017.
  9. M. Golay, “Complementary series,” IRE transactions on information theory, vol. 7, no. 2, pp. 82–87, 1961.
  10. R. J. Turyn, “Hadamard matrices, Baumert-Hall units, four-symbol sequences, pulse compression, and surface wave encodings,” Journal of Combinatorial Theory, Series A, vol. 16, no. 3, pp. 313–333, 1974.
  11. P. Borwein and R. Ferguson, “A complete description of Golay pairs for lengths up to 100,” Mathematics of computation, vol. 73, no. 246, pp. 967–985, 2004.
  12. R. Craigen, W. Holzmann, and H. Kharaghani, “Complex Golay sequences: structure and applications,” Discrete mathematics, vol. 252, no. 1-3, pp. 73–89, 2002.
  13. Z. Wang, E. Xue, and J. Chai, “A method to construct complementary sets of non-power-of-two length by concatenation,” in 2017 Eighth International Workshop on Signal Design and Its Applications in Communications (IWSDA).   IEEE, 2017, pp. 24–28.
  14. G. Wang, A. R. Adhikary, Z. Zhou, and Y. Yang, “Generalized constructions of complementary sets of sequences of lengths non-power-of-two,” IEEE Signal Processing Letters, vol. 27, pp. 136–140, 2019.
  15. C. Du and Y. Jiang, “Polyphase Golay complementary arrays: The possible sizes and new constructions,” IEEE Transactions on Information Theory, 2023.
  16. G. Ghosh, S. Majhi, and A. K. Upadhyay, “A direct construction of 2D-CCC with arbitrary array size and flexible set size using multivariable function,” arXiv preprint arXiv:2207.13395, 2022.
  17. J. Goethals and J. Seidel, “A skew Hadamard matrix of order 36,” Journal of the Australian Mathematical Society, vol. 11, no. 3, pp. 343–344, 1970.
  18. R. Craigen, “Signed groups, sequences, and the asymptotic existence of Hadamard matrices,” Journal of Combinatorial Theory, Series A, vol. 71, no. 2, pp. 241–254, 1995.
  19. R. Craigen, W. H. Holzmann, and H. Kharaghani, “On the asymptotic existence of complex Hadamard matrices,” Journal of Combinatorial Designs, vol. 5, no. 5, pp. 319–327, 1997.
  20. J. S. Wallis, “On the existence of Hadamard matrices,” Journal of Combinatorial Theory, Series A, vol. 21, no. 2, pp. 188–195, 1976.
  21. C. Koukouvinos and J. Seberry, “Addendum to further results on base sequences, disjoint complementary sequences, OD (4t; t, t, t, t) and the excess of Hadamard matrices,” Congressus Numerantium, vol. 82, pp. 97–103, 1991.
  22. D. Ž. Đoković, “On the base sequence conjecture,” Discrete Mathematics, vol. 310, no. 13-14, pp. 1956–1964, 2010.
  23. C. Yang, “On composition of four-symbol δ𝛿\deltaitalic_δ-codes and Hadamard matrices,” Proceedings of the American Mathematical Society, vol. 107, no. 3, pp. 763–776, 1989.
Citations (2)

Summary

We haven't generated a summary for this paper yet.