Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
132 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Capacity of the Weighted Read Channel (2401.15368v1)

Published 27 Jan 2024 in cs.IT and math.IT

Abstract: One of the primary sequencing methods gaining prominence in DNA storage is nanopore sequencing, attributed to various factors. In this work, we consider a simplified model of the sequencer, characterized as a channel. This channel takes a sequence and processes it using a sliding window of length $\ell$, shifting the window by $\delta$ characters each time. The output of this channel, which we refer to as the read vector, is a vector containing the sums of the entries in each of the windows. The capacity of the channel is defined as the maximal information rate of the channel. Previous works have already revealed capacity values for certain parameters $\ell$ and $\delta$. In this work, we show that when $\delta < \ell < 2\delta$, the capacity value is given by $\frac{1}{\delta}\log_2 \frac{1}{2}(\ell+1+ \sqrt{(\ell+1)2 - 4(\ell - \delta)(\ell-\delta +1)})$. Additionally, we construct an upper bound when $2\delta < \ell$. Finally, we extend the model to the two-dimensional case and present several results on its capacity.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (16)
  1. P. L. Antkowiak, J. Lietard, M. Z. Darestani, M. M. Somoza, W. J. Stark, R. Heckel, and R. N. Grass, “Low cost dna data storage using photolithographic synthesis and advanced information reconstruction and error correction,” Nature communications, vol. 11, no. 1, p. 5345, 2020.
  2. S. Palluk, D. H. Arlow, T. De Rond, S. Barthel, J. S. Kang, R. Bector, H. M. Baghdassarian, A. N. Truong, P. W. Kim, A. K. Singh et al., “De novo dna synthesis using polymerase-nucleotide conjugates,” Nature biotechnology, vol. 36, no. 7, pp. 645–650, 2018.
  3. H. H. Lee, R. Kalhor, N. Goela, J. Bolot, and G. M. Church, “Terminator-free template-independent enzymatic dna synthesis for digital information storage,” Nature communications, vol. 10, no. 1, p. 2383, 2019.
  4. M. Jain, H. E. Olsen, B. Paten, and M. Akeson, “The oxford nanopore minion: delivery of nanopore sequencing to the genomics community,” Genome biology, vol. 17, pp. 1–11, 2016.
  5. D. Deamer, M. Akeson, and D. Branton, “Three decades of nanopore sequencing,” Nature biotechnology, vol. 34, no. 5, pp. 518–524, 2016.
  6. A. H. Laszlo, I. M. Derrington, B. C. Ross, H. Brinkerhoff, A. Adey, I. C. Nova, J. M. Craig, K. W. Langford, J. M. Samson, R. Daza et al., “Decoding long nanopore sequencing reads of natural dna,” Nature biotechnology, vol. 32, no. 8, pp. 829–833, 2014.
  7. J. J. Kasianowicz, E. Brandin, D. Branton, and D. W. Deamer, “Characterization of individual polynucleotide molecules using a membrane channel,” Proceedings of the National Academy of Sciences, vol. 93, no. 24, pp. 13 770–13 773, 1996.
  8. W. Mao, S. N. Diggavi, and S. Kannan, “Models and information-theoretic bounds for nanopore sequencing,” IEEE Transactions on Information Theory, vol. 64, no. 4, pp. 3216–3236, 2018.
  9. R. Hulett, S. Chandak, and M. Wootters, “On coding for an abstracted nanopore channel for dna storage,” in 2021 IEEE International Symposium on Information Theory (ISIT).   IEEE, 2021, pp. 2465–2470.
  10. Y. M. Chee, A. Vardy, E. Yaakobi et al., “Coding for transverse-reads in domain wall memories,” in 2021 IEEE International Symposium on Information Theory (ISIT).   IEEE, 2021, pp. 2924–2929.
  11. A. Banerjee, Y. Yehezkeally, A. Wachter-Zeh, and E. Yaakobi, “Error-correcting codes for nanopore sequencing,” arXiv preprint arXiv:2305.10214, 2023.
  12. B. H. Marcus, R. M. Roth, and P. H. Siegel, “An introduction to coding for constrained systems,” Lecture notes, 2001.
  13. S. Marcovich and E. Yaakobi, “The zero cubes free and cubes unique multidimensional constraints,” in 2022 IEEE Information Theory Workshop (ITW).   IEEE, 2022, pp. 220–225.
  14. T. Etzion and E. Yaakobi, “Error-correction of multidimensional bursts,” IEEE Transactions on Information Theory, vol. 55, no. 3, pp. 961–976, 2009.
  15. A. Sharov and R. M. Roth, “Two-dimensional constrained coding based on tiling,” IEEE transactions on information theory, vol. 56, no. 4, pp. 1800–1807, 2010.
  16. I. Tal and R. M. Roth, “Bounds on the rate of 2-d bit-stuffing encoders,” in 2008 IEEE International Symposium on Information Theory.   IEEE, 2008, pp. 1463–1467.
Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com