Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Feedback-based Quantum Algorithm Inspired by Counterdiabatic Driving (2401.15303v2)

Published 27 Jan 2024 in quant-ph

Abstract: In recent quantum algorithmic developments, a feedback-based approach has shown promise for preparing quantum many-body system ground states and solving combinatorial optimization problems. This method utilizes quantum Lyapunov control to iteratively construct quantum circuits. Here, we propose a substantial enhancement by implementing a protocol that uses ideas from quantum Lyapunov control and the counterdiabatic driving protocol, a key concept from quantum adiabaticity. Our approach introduces an additional control field inspired by counterdiabatic driving. We apply our algorithm to prepare ground states in one-dimensional quantum Ising spin chains. Comprehensive simulations demonstrate a remarkable acceleration in population transfer to low-energy states within a significantly reduced time frame compared to conventional feedback-based quantum algorithms. This acceleration translates to a reduced quantum circuit depth, a critical metric for potential quantum computer implementation. We validate our algorithm on the IBM cloud computer, highlighting its efficacy in expediting quantum computations for many-body systems and combinatorial optimization problems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (15)
  1. D. Poulin and P. Wocjan, Phys. Rev. Lett. 102, 130503 (2009).
  2. L. Lin and Y. Tong, Quantum 4, 372 (2020).
  3. T. Albash and D. A. Lidar, Rev. Mod. Phys. 90, 015002 (2018).
  4. T. Kadowaki and H. Nishimori, Phys. Rev. E 58, 5355 (1998).
  5. J. Preskill, Quantum 2, 79 (2018).
  6. S. Lloyd, “Quantum approximate optimization is computationally universal,”  (2018), arXiv:1812.11075 [quant-ph] .
  7. R. Chakrabarti and H. Rabitz, International Reviews in Physical Chemistry 26, 671 (2007).
  8. L. Bittel and M. Kliesch, Phys. Rev. Lett. 127, 120502 (2021).
  9. S. Grivopoulos and B. Bamieh, in 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475), Vol. 1 (2003) pp. 434–438 Vol.1.
  10. M. Demirplak and S. A. Rice, The Journal of Physical Chemistry A 107, 9937 (2003).
  11. J. P. La Salle, The Stability of Dynamical Systems (Society for Industrial and Applied Mathematics, 1976).
  12. D. Sels and A. Polkovnikov, Proceedings of the National Academy of Sciences 114, E3909 (2017).
  13. A. del Campo, Phys. Rev. Lett. 111, 100502 (2013).
  14. K. Takahashi, Journal of the Physical Society of Japan 88, 061002 (2019).
  15. N. Yu and T.-C. Wei,   (2023), arXiv:2303.08938 [quant-ph] .
Citations (8)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com