Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ransomware threat mitigation through network traffic analysis and machine learning techniques (2401.15285v2)

Published 27 Jan 2024 in cs.CR and cs.LG

Abstract: In recent years, there has been a noticeable increase in cyberattacks using ransomware. Attackers use this malicious software to break into networks and harm computer systems. This has caused significant and lasting damage to various organizations, including government, private companies, and regular users. These attacks often lead to the loss or exposure of sensitive information, disruptions in normal operations, and persistent vulnerabilities. This paper focuses on a method for recognizing and identifying ransomware in computer networks. The approach relies on using machine learning algorithms and analyzing the patterns of network traffic. By collecting and studying this traffic, and then applying machine learning models, we can accurately identify and detect ransomware. The results of implementing this method show that machine learning algorithms can effectively pinpoint ransomware based on network traffic, achieving high levels of precision and accuracy.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com
Youtube Logo Streamline Icon: https://streamlinehq.com