Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

FDR-Controlled Portfolio Optimization for Sparse Financial Index Tracking (2401.15139v2)

Published 26 Jan 2024 in q-fin.PM, cs.LG, stat.ME, and stat.ML

Abstract: In high-dimensional data analysis, such as financial index tracking or biomedical applications, it is crucial to select the few relevant variables while maintaining control over the false discovery rate (FDR). In these applications, strong dependencies often exist among the variables (e.g., stock returns), which can undermine the FDR control property of existing methods like the model-X knockoff method or the T-Rex selector. To address this issue, we have expanded the T-Rex framework to accommodate overlapping groups of highly correlated variables. This is achieved by integrating a nearest neighbors penalization mechanism into the framework, which provably controls the FDR at the user-defined target level. A real-world example of sparse index tracking demonstrates the proposed method's ability to accurately track the S&P 500 index over the past 20 years based on a small number of stocks. An open-source implementation is provided within the R package TRexSelector on CRAN.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. K. Benidis, Y. Feng, and D. P. Palomar, “Sparse portfolios for high-dimensional financial index tracking,” IEEE Trans. Signal Process., vol. 66, no. 1, pp. 155–170, 2017.
  2. R. Jansen and R. Van Dijk, “Optimal benchmark tracking with small portfolios,” J. Portf. Manag., vol. 28, no. 2, p. 33, 2002.
  3. D. Maringer and O. Oyewumi, “Index tracking with constrained portfolios,” Intell. Syst. Account. Finance Manag., vol. 15, no. 1-2, pp. 57–71, 2007.
  4. A. Scozzari, F. Tardella, S. Paterlini, and T. Krink, “Exact and heuristic approaches for the index tracking problem with UCITS constraints,” Ann. Oper. Res., vol. 205, pp. 235–250, 2013.
  5. F. Xu, Z. Lu, and Z. Xu, “An efficient optimization approach for a cardinality-constrained index tracking problem,” Optim. Methods Softw., vol. 31, no. 2, pp. 258–271, 2016.
  6. Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate: a practical and powerful approach to multiple testing,” J. R. Stat. Soc. Ser. B. Stat. Methodol., vol. 57, no. 1, pp. 289–300, 1995.
  7. Y. Benjamini and D. Yekutieli, “The control of the false discovery rate in multiple testing under dependency,” Ann. Statist., vol. 29, no. 4, pp. 1165–1188, 2001.
  8. R. F. Barber and E. J. Candès, “Controlling the false discovery rate via knockoffs,” Ann. Statist., vol. 43, no. 5, pp. 2055–2085, 2015.
  9. E. J. Candès, Y. Fan, L. Janson, and J. Lv, “Panning for gold: ‘model-X’ knockoffs for high dimensional controlled variable selection,” J. R. Stat. Soc. Ser. B. Stat. Methodol., vol. 80, no. 3, pp. 551–577, 2018.
  10. J. Machkour, M. Muma, and D. P. Palomar, “The terminating-random experiments selector: Fast high-dimensional variable selection with false discovery rate control,” arXiv preprint arXiv:2110.06048, 2022.
  11. ——, “False discovery rate control for fast screening of large-scale genomics biobanks,” in Proc. 22nd IEEE Statist. Signal Process. Workshop (SSP), 2023, pp. 666–670.
  12. ——, “High-dimensional false discovery rate control for dependent variables,” arXiv preprint, 2024.
  13. B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, “Least angle regression,” Ann. Statist., vol. 32, no. 2, pp. 407–499, 2004.
  14. R. Tibshirani, “Regression shrinkage and selection via the lasso,” J. R. Stat. Soc. Ser. B. Stat. Methodol., vol. 58, no. 1, pp. 267–288, 1996.
  15. H. Zou and T. Hastie, “Regularization and variable selection via the elastic net,” J. R. Stat. Soc. Ser. B. Stat. Methodol., vol. 67, no. 2, pp. 301–320, 2005.
  16. H. Zou, “The adaptive lasso and its oracle properties,” J. Amer. Statist. Assoc., vol. 101, no. 476, pp. 1418–1429, 2006.
  17. J. Machkour, M. Muma, and D. P. Palomar, “False discovery rate control for grouped variable selection in high-dimensional linear models using the T-Knock filter,” in 30th Eur. Signal Process. Conf. (EUSIPCO), 2022, pp. 892–896.
  18. T. Koka, J. Machkour, and M. Muma, “False discovery rate control for Gaussian graphical models via neighborhood screening,” arXiv preprint arXiv:2401.09979, 2024.
  19. J. Machkour, A. Breloy, M. Muma, D. P. Palomar, and F. Pascal, “Sparse PCA with false discovery rate controlled variable selection,” arXiv preprint arXiv:2401.08375, 2024.
Citations (3)

Summary

We haven't generated a summary for this paper yet.