Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
93 tokens/sec
Gemini 2.5 Pro Premium
49 tokens/sec
GPT-5 Medium
24 tokens/sec
GPT-5 High Premium
32 tokens/sec
GPT-4o
93 tokens/sec
DeepSeek R1 via Azure Premium
75 tokens/sec
GPT OSS 120B via Groq Premium
475 tokens/sec
Kimi K2 via Groq Premium
82 tokens/sec
2000 character limit reached

Maximum entropy in dynamic complex networks (2401.15090v3)

Published 22 Jan 2024 in cond-mat.stat-mech, physics.data-an, and physics.soc-ph

Abstract: The field of complex networks studies a wide variety of interacting systems by representing them as networks. To understand their properties and mutual relations, the randomisation of network connections is a commonly used tool. However, information-theoretic randomisation methods with well-established foundations mostly provide a stationary description of these systems, while stochastic randomisation methods that account for their dynamic nature lack such general foundations and require extensive repetition of the stochastic process to measure statistical properties. In this work, we extend the applicability of information-theoretic methods beyond stationary network models. By using the information-theoretic principle of maximum caliber we construct dynamic network ensemble distributions based on constraints representing statistical properties with known values throughout the evolution. We focus on the particular cases of dynamics constrained by the average number of connections of the whole network and each node, comparing each evolution to simulations of stochastic randomisation that obey the same constraints. We find that ensemble distributions estimated from simulations match those calculated with maximum caliber and that the equilibrium distributions to which they converge agree with known results of maximum entropy given the same constraints. Finally, we discuss further the connections to other maximum entropy approaches to network dynamics and conclude by proposing some possible avenues of future research.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. S. H. Bertz, The first general index of molecular complexity, Journal of the American Chemical Society 103, 3599 (1981).
  2. N. Abadi and F. Ruzzenenti, Complex networks and interacting particle systems, Entropy 25, 1490 (2023).
  3. F. V. Farahani, W. Karwowski, and N. R. Lighthall, Application of graph theory for identifying connectivity patterns in human brain networks: a systematic review, frontiers in Neuroscience 13, 585 (2019).
  4. Otherwise it is called directed.
  5. M. E. Newman, Mixing patterns in networks, Physical review E 67, 026126 (2003).
  6. M. Dadashi, I. Barjasteh, and M. Jalili, Rewiring dynamical networks with prescribed degree distribution for enhancing synchronizability, Chaos: An Interdisciplinary Journal of Nonlinear Science 20 (2010).
  7. M. L. Bertotti and G. Modanese, Network rewiring in the r-k plane, Entropy 22, 653 (2020).
  8. D. Garlaschelli and M. I. Loffredo, Maximum likelihood: Extracting unbiased information from complex networks, Physical Review E 78, 015101 (2008).
  9. T. Squartini, G. Fagiolo, and D. Garlaschelli, Randomizing world trade. i. a binary network analysis, Physical Review E 84, 046117 (2011a).
  10. T. Squartini, G. Fagiolo, and D. Garlaschelli, Randomizing world trade. ii. a weighted network analysis, Physical Review E 84, 046118 (2011b).
  11. T. Squartini and D. Garlaschelli, Maximum-entropy networks: Pattern detection, network reconstruction and graph combinatorics (Springer, 2017).
  12. Which may not be the case for arbitrarily defined randomisation steps.
  13. D. J. Watts and S. H. Strogatz, Collective dynamics of ‘small-world’networks, nature 393, 440 (1998).
  14. A.-L. Barabási and R. Albert, Emergence of scaling in random networks, science 286, 509 (1999).
  15. E. T. Jaynes, The minimum entropy production principle, Annual Review of Physical Chemistry 31, 579 (1980).
  16. S. Davis and D. González, Hamiltonian formalism and path entropy maximization, Journal of Physics A: Mathematical and Theoretical 48, 425003 (2015).
  17. A. Caticha, Entropic dynamics, time and quantum theory, Journal of Physics A: Mathematical and Theoretical 44, 225303 (2011).
  18. A. Caticha, Entropic dynamics, Entropy 17, 6110 (2015).
  19. P. Pessoa, F. X. Costa, and A. Caticha, Entropic dynamics on gibbs statistical manifolds, Entropy 23, 494 (2021).
  20. T. M. Cover, Elements of information theory (John Wiley & Sons, 1999).
  21. In general the link is moved with probability p𝑝pitalic_p, but we will fix p=1𝑝1p=1italic_p = 1 for simplicity.
  22. Assuming p=1𝑝1p=1italic_p = 1.
  23. The Hamming distance between two matrices is understood to be the sum of the Hamming distances between corresponding rows.
  24. Note that this constraint is sensible to the choice of p=1𝑝1p=1italic_p = 1 in the probability of actually replacing a link. In general the right hand side of eq. 4 is 2⁢p2𝑝2p2 italic_p.
  25. Note that the link cannot be placed in the position from which it was removed in order for the Hamming distance constraint to be valid.
  26. This is the same as interpreting the specific samples drawn to obtain the results of fig. 2 as binary probability matrices.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube