Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Set-Based Training for Neural Network Verification (2401.14961v2)

Published 26 Jan 2024 in cs.LG, cs.CR, and cs.LO

Abstract: Neural networks are vulnerable to adversarial attacks, i.e., small input perturbations can significantly affect the outputs of a neural network. In safety-critical environments, the inputs often contain noisy sensor data; hence, in this case, neural networks that are robust against input perturbations are required. To ensure safety, the robustness of a neural network must be formally verified. However, training and formally verifying robust neural networks is challenging. We address both of these challenges by employing, for the first time, an end-to-end set-based training procedure that trains robust neural networks for formal verification. Our training procedure trains neural networks, which can be easily verified using simple polynomial-time verification algorithms. Moreover, our extensive evaluation demonstrates that our set-based training procedure effectively trains robust neural networks, which are easier to verify. Set-based trained neural networks consistently match or outperform those trained with state-of-the-art robust training approaches.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com
Youtube Logo Streamline Icon: https://streamlinehq.com