Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Expressivity-aware Music Performance Retrieval using Mid-level Perceptual Features and Emotion Word Embeddings (2401.14826v1)

Published 26 Jan 2024 in cs.SD, cs.IR, and eess.AS

Abstract: This paper explores a specific sub-task of cross-modal music retrieval. We consider the delicate task of retrieving a performance or rendition of a musical piece based on a description of its style, expressive character, or emotion from a set of different performances of the same piece. We observe that a general purpose cross-modal system trained to learn a common text-audio embedding space does not yield optimal results for this task. By introducing two changes -- one each to the text encoder and the audio encoder -- we demonstrate improved performance on a dataset of piano performances and associated free-text descriptions. On the text side, we use emotion-enriched word embeddings (EWE) and on the audio side, we extract mid-level perceptual features instead of generic audio embeddings. Our results highlight the effectiveness of mid-level perceptual features learnt from music and emotion enriched word embeddings learnt from emotion-labelled text in capturing musical expression in a cross-modal setting. Additionally, our interpretable mid-level features provide a route for introducing explainability in the retrieval and downstream recommendation processes.

Summary

We haven't generated a summary for this paper yet.