Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A RISC-V SOC for Terahertz IoT Devices: Implementation and design challenges (2401.14620v1)

Published 26 Jan 2024 in cs.AR

Abstract: Terahertz (THz) communication is considered a viable approach to augmenting the communication capacity of prospective Internet-of-Things (IoT) resulting in enhanced spectral efficiency. This study first provides an outline of the design challenges encountered in developing THz transceivers. This paper introduces advanced approaches and a unique methodology known as Modified Pulse-width Modulation (MPWM) to address the issues in the THz domain. In this situation involving a transceiver that handles complex modulation schemes, the presence of a mixed signal through a high-resolution digital-to-analog converter (DAC) in the transmitter greatly contributes to the limitation in maintaining linearity at high frequencies. The utilization of Pulse-width Modulation-based Digital-to-Analog Converters (PWM-DACs) has garnered significant attention among scholars due to its efficiency and affordability. However, the converters' performance is restricted by insufficient conversion speed and precision, especially in the context of high-resolution, high-order modulation schemes for THz wireless communications. The MPWM framework offers a multitude of adjustable options, rendering the final MPWM-DAC highly adaptable for a diverse array of application scenarios. Comparative performance assessments indicate that MPWM-DACs have enhanced conversion speed compared to standard PWM-DACs, and they also provide greater accuracy in comparison to Pulse-count Modulation DACs (PCM-DACs). The study presents a comprehensive examination of the core principles, spectrum characteristics, and evaluation metrics, as well as the development and experimental validation of the MPWM method. Furthermore, we present a RISC-V System-on-Chip (SoC) that incorporates an MPWM-DAC, offering a highly favorable resolution for THz IoT communications.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (54)
  1. Y. Xu, Z. Liu, C. Huang, and C. Yuen, “Robust resource allocation algorithm for energy-harvesting-based d2d communication underlaying uav-assisted networks,” IEEE Internet of Things Journal, vol. 8, no. 23, pp. 17 161–17 171, 2021.
  2. H. Jang, K. Han, S. Lee, J.-J. Lee, S.-Y. Lee, J.-H. Lee, and W. Lee, “Developing a multicore platform utilizing open risc-v cores,” IEEE Access, vol. 9, pp. 120 010–120 023, 2021.
  3. H. B. Amor, C. Bernier, and Z. Přikryl, “A risc-v isa extension for ultra-low power iot wireless signal processing,” IEEE Transactions on Computers, vol. 71, no. 4, pp. 766–778, 2022.
  4. T. Kürner and S. Priebe, “Towards thz communications - status in research, standardization and regulation,” Journal of Infrared, Millimeter, and Terahertz Waves, vol. 35, pp. 53–62, 2014. [Online]. Available: https://api.semanticscholar.org/CorpusID:28353094
  5. H. Sarieddeen, M.-S. Alouini, and T. Y. Al-Naffouri, “Terahertz-band ultra-massive spatial modulation mimo,” IEEE Journal on Selected Areas in Communications, vol. 37, no. 9, pp. 2040–2052, 2019.
  6. P. Heydari, “Terahertz integrated circuits and systems for high-speed wireless communications: Challenges and design perspectives,” IEEE Open Journal of the Solid-State Circuits Society, vol. 1, pp. 18–36, 2021.
  7. M. Alibakhshikenari, E. M. Ali, M. Soruri, M. Dalarsson, M. Naser-Moghadasi, B. S. Virdee, C. Stefanovic, A. Pietrenko-Dabrowska, S. Koziel, S. Szczepanski, and E. Limiti, “A comprehensive survey on antennas on-chip based on metamaterial, metasurface, and substrate integrated waveguide principles for millimeter-waves and terahertz integrated circuits and systems,” IEEE Access, vol. 10, pp. 3668–3692, 2022.
  8. H. Jalili and O. Momeni, “A 0.34-thz wideband wide-angle 2-d steering phased array in 0.13- μ𝜇\muitalic_μ m sige bicmos,” IEEE Journal of Solid-State Circuits, vol. 54, no. 9, pp. 2449–2461, 2019.
  9. M. Alibakhshikenari, B. S. Virdee, C. H. See, R. A. Abd-Alhameed, F. Falcone, and E. Limiti, “High-performance 50µm silicon-based on-chip antenna with high port-to-port isolation implemented by metamaterial and siw concepts for thz integrated systems,” in 2019 Thirteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials), 2019, pp. X–023–X–025.
  10. X. Yi, C. Wang, X. Chen, J. Wang, J. Grajal, and R. Han, “A 220-to-320-ghz fmcw radar in 65-nm cmos using a frequency-comb architecture,” IEEE Journal of Solid-State Circuits, vol. 56, no. 2, pp. 327–339, 2021.
  11. H. Jalili and O. Momeni, “A 0.46-thz 25-element scalable and wideband radiator array with optimized lens integration in 65-nm cmos,” IEEE Journal of Solid-State Circuits, vol. 55, no. 9, pp. 2387–2400, 2020.
  12. C.-H. Li and T.-Y. Chiu, “340-ghz low-cost and high-gain on-chip higher order mode dielectric resonator antenna for thz applications,” IEEE Transactions on Terahertz Science and Technology, vol. 7, no. 3, pp. 284–294, 2017.
  13. K. Schmalz, R. Wang, J. Borngräber, W. Debski, W. Winkler, and C. Meliani, “245 ghz sige transmitter with integrated antenna and external pll,” in 2013 IEEE MTT-S International Microwave Symposium Digest (MTT), 2013, pp. 1–3.
  14. W. T. Khan, A. Çağrı Ulusoy, G. Dufour, M. Kaynak, B. Tillack, J. D. Cressler, and J. Papapolymerou, “A d-band micromachined end-fire antenna in 130-nm sige bicmos technology,” IEEE Transactions on Antennas and Propagation, vol. 63, no. 6, pp. 2449–2459, 2015.
  15. I. Sarkas, J. Hasch, A. Balteanu, and S. P. Voinigescu, “A fundamental frequency 120-ghz sige bicmos distance sensor with integrated antenna,” IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 3, pp. 795–812, 2012.
  16. Y. Tousi and E. Afshari, “A high-power and scalable 2-d phased array for terahertz cmos integrated systems,” IEEE Journal of Solid-State Circuits, vol. 50, no. 2, pp. 597–609, 2015.
  17. M. Alibakhshikenari, B. S. Virdee, C. H. See, R. Abd-Alhameed, F. Falcone, and E. Limiti, “A novel 0.3-0.31 thz gaas-based transceiver with on-chip slotted metamaterial antenna based on siw technology,” in 2019 IEEE Asia-Pacific Microwave Conference (APMC), 2019, pp. 69–71.
  18. M. H. Maktoomi, S. Saadat, O. Momeni, P. Heydari, and H. Aghasi, “Broadband antenna design for terahertz communication systems,” IEEE Access, vol. 11, pp. 20 897–20 911, 2023.
  19. H. J. Ng and D. Kissinger, “Highly miniaturized 120-ghz simo and mimo radar sensor with on-chip folded dipole antennas for range and angular measurements,” IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 6, pp. 2592–2603, 2018.
  20. J. M. Edwards and G. M. Rebeiz, “High-efficiency elliptical slot antennas with quartz superstrates for silicon rfics,” IEEE Transactions on Antennas and Propagation, vol. 60, no. 11, pp. 5010–5020, 2012.
  21. M. Saad Khan, F. A. Tahir, A. Meredov, A. Shamim, and H. M. Cheema, “A w-band ebg-backed double-rhomboid bowtie-slot on-chip antenna,” IEEE Antennas and Wireless Propagation Letters, vol. 18, no. 5, pp. 1046–1050, 2019.
  22. M. Frank, F. Lurz, R. Weigel, and A. Koelpin, “122 ghz low-cost substrate integrated waveguide based leaky-wave antenna design,” in 2019 IEEE Radio and Wireless Symposium (RWS), 2019, pp. 1–4.
  23. H. H. Bae, T. H. Jang, H. Y. Kim, and C. S. Park, “Broadband 120 ghz l-probe differential feed dual-polarized patch antenna with soft surface,” IEEE Transactions on Antennas and Propagation, vol. 69, no. 10, pp. 6185–6195, 2021.
  24. A. Simsek, A. S. H. Ahmed, A. A. Farid, U. Soylu, and M. J. W. Rodwell, “A 140ghz two-channel cmos transmitter using low-cost packaging technologies,” in 2020 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), 2020, pp. 1–3.
  25. A. Simsek, S.-K. Kim, M. Abdelghany, A. S. H. Ahmed, A. A. Farid, U. Madhow, and M. J. W. Rodwell, “A 146.7 ghz transceiver with 5 gbaud data transmission using a low-cost series-fed patch antenna array through wirebonding integration,” in 2020 IEEE Radio and Wireless Symposium (RWS), 2020, pp. 68–71.
  26. R. Han and E. Afshari, “A cmos high-power broadband 260-ghz radiator array for spectroscopy,” IEEE Journal of Solid-State Circuits, vol. 48, no. 12, pp. 3090–3104, 2013.
  27. Y. Yang, O. D. Gurbuz, and G. M. Rebeiz, “An eight-element 370–410-ghz phased-array transmitter in 45-nm cmos soi with peak eirp of 8–8.5 dbm,” IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 12, pp. 4241–4249, 2016.
  28. H. Saeidi, S. Venkatesh, C. R. Chappidi, T. Sharma, C. Zhu, and K. Sengupta, “29.9 a 4×4 distributed multi-layer oscillator network for harmonic injection and thz beamforming with 14dbm eirp at 416ghz in a lensless 65nm cmos ic,” in 2020 IEEE International Solid-State Circuits Conference - (ISSCC), 2020, pp. 256–258.
  29. P. Herrero and J. Schoebel, “Microstrip patch array antenna technology for 122 ghz ism sensing applications,” in 2009 German Microwave Conference, 2009, pp. 1–4.
  30. S. Shahramian, M. Holyoak, A. Singh, B. J. Farahani, and Y. Baeyens, “A fully integrated scalable w-band phased-array module with integrated antennas, self-alignment and self-test,” in 2018 IEEE International Solid-State Circuits Conference-(ISSCC).   IEEE, 2018, pp. 74–76.
  31. E. Naviasky, L. Iotti, G. LaCaille, B. Nikolić, E. Alon, and A. M. Niknejad, “A 71-to-86-ghz 16-element by 16-beam multi-user beamforming integrated receiver sub-array for massive mimo,” IEEE Journal of Solid-State Circuits, vol. 56, no. 12, pp. 3811–3826, 2021.
  32. M. Alibakhshikenari, B. S. Virdee, C. H. See, R. A. Abd-Alhameed, F. Falcone, and E. Limiti, “Silicon-based 0.450-0.475 thz series-fed double dielectric resonator on-chip antenna array based on metamaterial properties for integrated-circuits,” in 2019 Thirteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials), 2019, pp. X–026–X–028.
  33. M. Alibakhshikenari, B. S. Virdee, C. H. See, R. A. Abd-Alhameed, and E. Limiti, “High performance on-chip array antenna based on metasurface feeding structure for terahertz integrated circuits,” in 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 2019, pp. 1–2.
  34. R. Beica, “Flip chip market and technology trends,” in 2013 Eurpoean Microelectronics Packaging Conference (EMPC).   IEEE, 2013, pp. 1–4.
  35. W. Shin, B.-H. Ku, O. Inac, Y.-C. Ou, and G. M. Rebeiz, “A 108–114 ghz 4 ×\,\times\,×4 wafer-scale phased array transmitter with high-efficiency on-chip antennas,” IEEE Journal of Solid-State Circuits, vol. 48, no. 9, pp. 2041–2055, 2013.
  36. B. Yang, Z. Yu, J. Lan, R. Zhang, J. Zhou, and W. Hong, “Digital beamforming-based massive mimo transceiver for 5g millimeter-wave communications,” IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 7, pp. 3403–3418, 2018.
  37. S. Mondal, R. Singh, A. I. Hussein, and J. Paramesh, “A 25–30 ghz fully-connected hybrid beamforming receiver for mimo communication,” IEEE Journal of Solid-State Circuits, vol. 53, no. 5, pp. 1275–1287, 2018.
  38. A. Natarajan, A. Komijani, X. Guan, A. Babakhani, and A. Hajimiri, “A 77-ghz phased-array transceiver with on-chip antennas in silicon: Transmitter and local lo-path phase shifting,” IEEE Journal of Solid-State Circuits, vol. 41, no. 12, pp. 2807–2819, 2006.
  39. B. Sadhu, Y. Tousi, J. Hallin, S. Sahl, S. K. Reynolds, O. Renstrom, K. Sjogren, O. Haapalahti, N. Mazor, B. Bokinge, G. Weibull, H. Bengtsson, A. Carlinger, E. Westesson, J.-E. Thillberg, L. Rexberg, M. Yeck, X. Gu, M. Ferriss, D. Liu, D. Friedman, and A. Valdes-Garcia, “A 28-ghz 32-element trx phased-array ic with concurrent dual-polarized operation and orthogonal phase and gain control for 5g communications,” IEEE Journal of Solid-State Circuits, vol. 52, no. 12, pp. 3373–3391, 2017.
  40. T. T. Cai and L. Wang, “Orthogonal matching pursuit for sparse signal recovery with noise,” IEEE Transactions on Information Theory, vol. 57, no. 7, pp. 4680–4688, 2011.
  41. X. Yu, J.-C. Shen, J. Zhang, and K. B. Letaief, “Alternating minimization algorithms for hybrid precoding in millimeter wave mimo systems,” IEEE Journal of Selected Topics in Signal Processing, vol. 10, no. 3, pp. 485–500, 2016.
  42. Y.-Y. Lee, C.-H. Wang, and Y.-H. Huang, “A hybrid rf/baseband precoding processor based on parallel-index-selection matrix-inversion-bypass simultaneous orthogonal matching pursuit for millimeter wave mimo systems,” IEEE Transactions on Signal Processing, vol. 63, no. 2, pp. 305–317, 2015.
  43. C.-K. Ho, H.-Y. Cheng, and Y.-H. Huang, “Hybrid precoding processor for millimeter wave mimo communications,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 66, no. 12, pp. 1992–1996, 2019.
  44. W.-L. Hung, C.-H. Chen, C.-C. Liao, C.-R. Tsai, and A.-Y. A. Wu, “Low-complexity hybrid precoding algorithm based on orthogonal beamforming codebook,” in 2015 IEEE Workshop on Signal Processing Systems (SiPS), 2015, pp. 1–5.
  45. K.-T. Chen, Y.-T. Hwang, and Y.-C. Liao, “Vlsi design of a high throughput hybrid precoding processor for wireless mimo systems,” IEEE Access, vol. 7, pp. 85 925–85 936, 2019.
  46. J. Brady, N. Behdad, and A. M. Sayeed, “Beamspace mimo for millimeter-wave communications: System architecture, modeling, analysis, and measurements,” IEEE Transactions on Antennas and Propagation, vol. 61, no. 7, pp. 3814–3827, 2013.
  47. C.-H. Chen, C.-R. Tsai, Y.-H. Liu, W.-L. Hung, and A.-Y. Wu, “Compressive sensing (cs) assisted low-complexity beamspace hybrid precoding for millimeter-wave mimo systems,” IEEE Transactions on Signal Processing, vol. 65, no. 6, pp. 1412–1424, 2017.
  48. E. Gönültaş, S. Taner, A. Gallyas-Sanhueza, S. H. Mirfarshbafan, and C. Studer, “Hardware-aware beamspace precoding for all-digital mmwave massive mu-mimo,” IEEE Communications Letters, vol. 25, no. 11, pp. 3709–3713, 2021.
  49. D. F. Hoeschele, “Analog-to-digital and digital-to-analog conversion techniques,” pp. 397–397, 1994.
  50. D. S. The Engineering Staff of Analog Devices, “Analog-digital conversion handbook,” 1986.
  51. I. Corp., “Using a pwm as a digital-to-analog converter,” AN035701-0915.
  52. F. Zhou and W. Xiong, “Using pwm output as a digital-to-analog converter on dsp,” in 2010 International Conference on System Science, Engineering Design and Manufacturing Informatization, vol. 2.   IEEE, 2010, pp. 278–281.
  53. T. Instruments, “Using pwm output as a digital-to-analog converter on a tms320c240 dsp,” APPLICATION REPORT: SPRA490, November 1998.
  54. e. a. Halper, “Digital-to-analog conversion by pulse-count modulation methods,” IEEE Transactions on Instrumentation and Measurement, 1996.

Summary

We haven't generated a summary for this paper yet.