Quantization of Kähler Manifolds via Brane Quantization (2401.14574v3)
Abstract: In their physical proposal for quantization [20], Gukov-Witten suggested that, given a symplectic manifold $M$ with a complexification $X$, the A-model morphism spaces $\operatorname{Hom}(\mathcal{B}{\operatorname{cc}}, \mathcal{B}{\operatorname{cc}})$ and $\operatorname{Hom}(\mathcal{B}, \mathcal{B}{\operatorname{cc}})$ should recover holomorphic deformation quantization of $X$ and geometric quantization of $M$ respectively, where $\mathcal{B}{\operatorname{cc}}$ is a canonical coisotropic A-brane on $X$ and $\mathcal{B}$ is a Lagrangian A-brane supported on $M$. Assuming $M$ is spin and K\"ahler with a prequantum line bundle $L$, Chan-Leung-Li [10] constructed a subsheaf $\mathcal{O}{\operatorname{qu}}{(k)}$ of smooth functions on $M$ with a non-formal star product and a left $\mathcal{O}{\operatorname{qu}}{(k)}$-module structure on the sheaf of holomorphic sections of $L{\otimes k} \otimes \sqrt{K}$. In this paper, we give a careful treatment of the relation between (holomorphic) deformation quantizations of $M$ and $X$. As a result, Chan-Leung-Li's work [10] provides a mathematical realization of the action of $\operatorname{Hom}(\mathcal{B}{\operatorname{cc}}, \mathcal{B}{\operatorname{cc}})$ on $\operatorname{Hom}(\mathcal{B}, \mathcal{B}{\operatorname{cc}})$. By Fedosov's gluing arguments, we also construct a $\mathcal{O}{\operatorname{qu}}{(k)}$-$\overline{\mathcal{O}}_{\operatorname{qu}}{(k)}$-bimodule structure on the sheaf of smooth sections of $L{\otimes 2k}$ to realize the actions of $\operatorname{Hom}(\mathcal{B}{\operatorname{cc}}, \mathcal{B}{\operatorname{cc}})$ and $\operatorname{Hom}(\overline{\mathcal{B}}{\operatorname{cc}}, \overline{\mathcal{B}}{\operatorname{cc}})$ on $\operatorname{Hom}(\overline{\mathcal{B}}{\operatorname{cc}}, \mathcal{B}{\operatorname{cc}})$, which is related to the analytic geometric Langlands program.
- D. Kaledin, A canonical hyperkähler metric on the total space of a cotangent bundle, Quaternionic structures in mathematics and physics (Rome, 1999), Univ. Studi Roma “La Sapienza”, Rome, 1999, pp. 195–230.
- A. Yekutieli, Corrigendum to: “Deformation quantization in algebraic geometry” [Adv. Math. 198 (2005), no. 1, 383–432; mr2183259], Adv. Math. 217 (2008), no. 6, 2897–2906.