Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantization of Kähler Manifolds via Brane Quantization (2401.14574v3)

Published 26 Jan 2024 in math.SG, math-ph, math.DG, and math.MP

Abstract: In their physical proposal for quantization [20], Gukov-Witten suggested that, given a symplectic manifold $M$ with a complexification $X$, the A-model morphism spaces $\operatorname{Hom}(\mathcal{B}{\operatorname{cc}}, \mathcal{B}{\operatorname{cc}})$ and $\operatorname{Hom}(\mathcal{B}, \mathcal{B}{\operatorname{cc}})$ should recover holomorphic deformation quantization of $X$ and geometric quantization of $M$ respectively, where $\mathcal{B}{\operatorname{cc}}$ is a canonical coisotropic A-brane on $X$ and $\mathcal{B}$ is a Lagrangian A-brane supported on $M$. Assuming $M$ is spin and K\"ahler with a prequantum line bundle $L$, Chan-Leung-Li [10] constructed a subsheaf $\mathcal{O}{\operatorname{qu}}{(k)}$ of smooth functions on $M$ with a non-formal star product and a left $\mathcal{O}{\operatorname{qu}}{(k)}$-module structure on the sheaf of holomorphic sections of $L{\otimes k} \otimes \sqrt{K}$. In this paper, we give a careful treatment of the relation between (holomorphic) deformation quantizations of $M$ and $X$. As a result, Chan-Leung-Li's work [10] provides a mathematical realization of the action of $\operatorname{Hom}(\mathcal{B}{\operatorname{cc}}, \mathcal{B}{\operatorname{cc}})$ on $\operatorname{Hom}(\mathcal{B}, \mathcal{B}{\operatorname{cc}})$. By Fedosov's gluing arguments, we also construct a $\mathcal{O}{\operatorname{qu}}{(k)}$-$\overline{\mathcal{O}}_{\operatorname{qu}}{(k)}$-bimodule structure on the sheaf of smooth sections of $L{\otimes 2k}$ to realize the actions of $\operatorname{Hom}(\mathcal{B}{\operatorname{cc}}, \mathcal{B}{\operatorname{cc}})$ and $\operatorname{Hom}(\overline{\mathcal{B}}{\operatorname{cc}}, \overline{\mathcal{B}}{\operatorname{cc}})$ on $\operatorname{Hom}(\overline{\mathcal{B}}{\operatorname{cc}}, \mathcal{B}{\operatorname{cc}})$, which is related to the analytic geometric Langlands program.

Citations (1)

Summary

We haven't generated a summary for this paper yet.