Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Orthogonal Polynomial Kernel-Based Machine Learning Model for Differential-Algebraic Equations (2401.14382v1)

Published 25 Jan 2024 in math.NA, cs.LG, and cs.NA

Abstract: The recent introduction of the Least-Squares Support Vector Regression (LS-SVR) algorithm for solving differential and integral equations has sparked interest. In this study, we expand the application of this algorithm to address systems of differential-algebraic equations (DAEs). Our work presents a novel approach to solving general DAEs in an operator format by establishing connections between the LS-SVR machine learning model, weighted residual methods, and Legendre orthogonal polynomials. To assess the effectiveness of our proposed method, we conduct simulations involving various DAE scenarios, such as nonlinear systems, fractional-order derivatives, integro-differential, and partial DAEs. Finally, we carry out comparisons between our proposed method and currently established state-of-the-art approaches, demonstrating its reliability and effectiveness.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com