Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MultiTest: Physical-Aware Object Insertion for Testing Multi-sensor Fusion Perception Systems (2401.14314v1)

Published 25 Jan 2024 in cs.SE

Abstract: Multi-sensor fusion stands as a pivotal technique in addressing numerous safety-critical tasks and applications, e.g., self-driving cars and automated robotic arms. With the continuous advancement in data-driven AI, MSF's potential for sensing and understanding intricate external environments has been further amplified, bringing a profound impact on intelligent systems and specifically on their perception systems. Similar to traditional software, adequate testing is also required for AI-enabled MSF systems. Yet, existing testing methods primarily concentrate on single-sensor perception systems (e.g., image-/point cloud-based object detection systems). There remains a lack of emphasis on generating multi-modal test cases for MSF systems. To address these limitations, we design and implement MultiTest, a fitness-guided metamorphic testing method for complex MSF perception systems. MultiTest employs a physical-aware approach to synthesize realistic multi-modal object instances and insert them into critical positions of background images and point clouds. A fitness metric is designed to guide and boost the test generation process. We conduct extensive experiments with five SOTA perception systems to evaluate MultiTest from the perspectives of: (1) generated test cases' realism, (2) fault detection capabilities, and (3) performance improvement. The results show that MultiTest can generate realistic and modality-consistent test data and effectively detect hundreds of diverse faults of an MSF system under test. Moreover, retraining an MSF system on the test cases generated by MultiTest can improve the system's robustness.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com