Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

TDFNet: An Efficient Audio-Visual Speech Separation Model with Top-down Fusion (2401.14185v1)

Published 25 Jan 2024 in cs.SD, cs.AI, and eess.AS

Abstract: Audio-visual speech separation has gained significant traction in recent years due to its potential applications in various fields such as speech recognition, diarization, scene analysis and assistive technologies. Designing a lightweight audio-visual speech separation network is important for low-latency applications, but existing methods often require higher computational costs and more parameters to achieve better separation performance. In this paper, we present an audio-visual speech separation model called Top-Down-Fusion Net (TDFNet), a state-of-the-art (SOTA) model for audio-visual speech separation, which builds upon the architecture of TDANet, an audio-only speech separation method. TDANet serves as the architectural foundation for the auditory and visual networks within TDFNet, offering an efficient model with fewer parameters. On the LRS2-2Mix dataset, TDFNet achieves a performance increase of up to 10\% across all performance metrics compared with the previous SOTA method CTCNet. Remarkably, these results are achieved using fewer parameters and only 28\% of the multiply-accumulate operations (MACs) of CTCNet. In essence, our method presents a highly effective and efficient solution to the challenges of speech separation within the audio-visual domain, making significant strides in harnessing visual information optimally.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com