Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Predicting Hypoxia in Brain Tumors from Multiparametric MRI (2401.14171v1)

Published 25 Jan 2024 in eess.IV and cs.AI

Abstract: This research paper presents a novel approach to the prediction of hypoxia in brain tumors, using multi-parametric Magnetic Resonance Imaging (MRI). Hypoxia, a condition characterized by low oxygen levels, is a common feature of malignant brain tumors associated with poor prognosis. Fluoromisonidazole Positron Emission Tomography (FMISO PET) is a well-established method for detecting hypoxia in vivo, but it is expensive and not widely available. Our study proposes the use of MRI, a more accessible and cost-effective imaging modality, to predict FMISO PET signals. We investigate deep learning models (DL) trained on the ACRIN 6684 dataset, a resource that contains paired MRI and FMISO PET images from patients with brain tumors. Our trained models effectively learn the complex relationships between the MRI features and the corresponding FMISO PET signals, thereby enabling the prediction of hypoxia from MRI scans alone. The results show a strong correlation between the predicted and actual FMISO PET signals, with an overall PSNR score above 29.6 and a SSIM score greater than 0.94, confirming MRI as a promising option for hypoxia prediction in brain tumors. This approach could significantly improve the accessibility of hypoxia detection in clinical settings, with the potential for more timely and targeted treatments.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. T. Kniess, J. Zessin, P. Mäding, M. Kuchar, O. Kiss, and K. Kopka, “Synthesis of [18F]FMISO, a hypoxia-specific imaging probe for PET, an overview from a radiochemist’s perspective,” EJNMMI Radiopharmacy and Chemistry, vol. 8, p. 5, Mar 2023.
  2. S. Watanabe, T. Inoue, S. Okamoto, K. Magota, A. Takayanagi, J. Sakakibara-Konishi, N. Katoh, K. Hirata, O. Manabe, T. Toyonaga, Y. Kuge, H. Shirato, N. Tamaki, and T. Shiga, “Combination of FDG-PET and FMISO-PET as a treatment strategy for patients undergoing early-stage NSCLC stereotactic radiotherapy,” EJNMMI Research, vol. 9, p. 104, Dec 2019.
  3. R. A. D’Alonzo, S. Gill, P. Rowshanfarzad, S. Keam, K. M. MacKinnon, A. M. Cook, and M. A. Ebert, “In vivo noninvasive preclinical tumor hypoxia imaging methods: a review,” International Journal of Radiation Biology, vol. 97, p. 593–631, Apr. 2021.
  4. P. Gouel, P. Decazes, P. Vera, I. Gardin, S. Thureau, and P. Bohn, “Advances in pet and mri imaging of tumor hypoxia,” Frontiers in Medicine, vol. 10, Feb. 2023.
  5. C.-T. Lee, M.-K. Boss, and M. W. Dewhirst, “Imaging tumor hypoxia to advance radiation oncology,” Antioxidants & Redox Signaling, vol. 21, p. 313–337, July 2014.
  6. J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image translation using cycle-consistent adversarial networks,” Mar. 2017.
  7. P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation with conditional adversarial networks,” Nov. 2016.
  8. Q. Yang, N. Li, Z. Zhao, X. Fan, E. I.-C. Chang, and Y. Xu, “MRI cross-modality image-to-image translation,” Sci. Rep., vol. 10, p. 3753, Feb. 2020.
  9. A. Ben-Cohen, E. Klang, S. P. Raskin, S. Soffer, S. Ben-Haim, E. Konen, M. M. Amitai, and H. Greenspan, “Cross-modality synthesis from CT to PET using FCN and GAN networks for improved automated lesion detection,” 2 2018.
  10. S. Bhat, T. Arsenault, A. Baydoun, L. Bailey, A. Amini, B. George, K. Nam, G. Saieed, R. A. Zeidane, J. U. Heo, R. Muzic, T. Biswas, and T. Podder, “Synthetic FDG-positron emission tomography images for patients with non-small cell lung cancer: A deep learning-based approach using computed tomography images,” International Journal of Radiation Oncology*Biology*Physics, vol. 114, pp. e127–e128, 11 2022.
  11. J. Islam and Y. Zhang, “GAN-based synthetic brain PET image generation,” Brain Informatics, vol. 7, p. 3, 12 2020.
  12. M. A. Abazari, M. Soltani, F. M. Kashkooli, and K. Raahemifar, “Synthetic 18F-FDG PET image generation using a combination of biomathematical modeling and machine learning,” Cancers, vol. 14, p. 2786, 6 2022.
  13. R. C. Petersen, P. S. Aisen, L. A. Beckett, M. C. Donohue, A. C. Gamst, D. J. Harvey, C. R. Jack, Jr, W. J. Jagust, L. M. Shaw, A. W. Toga, J. Q. Trojanowski, and M. W. Weiner, “Alzheimer’s disease neuroimaging initiative (ADNI): clinical characterization,” Neurology, vol. 74, pp. 201–209, Dec. 2009.
  14. P. J. LaMontagne, T. L. Benzinger, J. C. Morris, S. Keefe, R. Hornbeck, C. Xiong, E. Grant, J. Hassenstab, K. Moulder, A. G. Vlassenko, M. E. Raichle, C. Cruchaga, and D. Marcus, “OASIS-3: Longitudinal neuroimaging, clinical, and cognitive dataset for normal aging and alzheimer disease,” Dec. 2019.
  15. I. Mérida, J. Jung, S. Bouvard, D. L. Bars, S. Lancelot, F. Lavenne, C. Bouillot, J. Redouté, A. Hammers, and N. Costes, “CERMEP-IDB-MRXFDG: a database of 37 normal adult human brain [18F]FDG PET, T1 and FLAIR MRI, and CT images available for research,” EJNMMI Research, vol. 11, p. 91, 12 2021.
  16. O. Dalmaz, M. Yurt, and T. Cukur, “Resvit: Residual vision transformers for multimodal medical image synthesis,” IEEE Transactions on Medical Imaging, vol. 41, pp. 2598–2614, 10 2022.
  17. M. Kollovieh, M. Keicher, S. Wunderlich, H. Burwinkel, T. Wendler, and N. Navab, “U-PET: Mri-based dementia detection with joint generation of synthetic FDG-PET images,” 6 2022.
  18. J. Zhang, X. He, L. Qing, F. Gao, and B. Wang, “BPGAN: Brain PET synthesis from mri using generative adversarial network for multi-modal alzheimer’s disease diagnosis,” Computer Methods and Programs in Biomedicine, vol. 217, p. 106676, 4 2022.
  19. F. Bazangani, F. J. P. Richard, B. Ghattas, and E. Guedj, “FDG-PET to t1 weighted mri translation with 3d elicit generative adversarial network (e-gan),” Sensors, vol. 22, p. 4640, 6 2022.
  20. F. S. Zadeh, S. Molani, M. Orouskhani, M. Rezaei, M. Shafiei, and H. Abbasi, “Generative adversarial networks for brain images synthesis: A review,” 5 2023.
  21. A. Rajagopal, Y. Natsuaki, K. Wangerin, M. Hamdi, H. An, J. J. Sunderland, R. Laforest, P. E. Kinahan, P. E. Z. Larson, and T. A. Hope, “Synthetic PET via domain translation of 3-D MRI,” IEEE Transactions on Radiation and Plasma Medical Sciences, vol. 7, pp. 333–343, 4 2023.
  22. T. Xie, C. Cao, Z. Cui, Y. Guo, C. Wu, X. Wang, Q. Li, Z. Hu, T. Sun, Z. Sang, Y. Zhou, Y. Zhu, D. Liang, Q. Jin, G. Chen, and H. Wang, “Synthesizing PET images from high-field and ultra-high-field mr images using joint diffusion attention model,” 5 2023.
  23. J. Ouyang, K. T. Chen, R. D. Armindo, G. A. Davidzon, K. E. Hawk, F. Moradi, J. Rosenberg, E. Lan, H. Zhang, and G. Zaharchuk, “Predicting FDG‐PET images from multi‐contrast MRI using deep learning in patients with brain neoplasms,” Journal of Magnetic Resonance Imaging, 6 2023.
  24. Y. Tu, S. Lin, J. Qiao, Y. Zhuang, Z. Wang, and D. Wang, “Multimodal fusion diagnosis of alzheimer’s disease based on FDG-PET generation,” Biomedical Signal Processing and Control, vol. 89, p. 105709, 3 2024.
  25. M. Karimipourfard, S. Sina, F. Khodadai Shoshtari, and M. Alavi, “Synthesis of prospective multiple time points F-18 FDG PET images from a single scan using a supervised generative adversarial network,” Nuklearmedizin, vol. 62, pp. 61–72, Mar. 2023.
  26. H. Takita, T. Matsumoto, H. Tatekawa, Y. Katayama, K. Nakajo, T. Uda, Y. Mitsuyama, S. L. Walston, Y. Miki, and D. Ueda, “AI-based virtual synthesis of methionine PET from contrast-enhanced MRI: Development and external validation study,” Radiology, vol. 308, 8 2023.
  27. A. Traverso, C. Rao, A. Briassouli, A. Dekker, D. D. Ruysscher, and W. van Elmpt, “PO-1609 generating synthetic hypoxia images from FDG-PET using generative adversarial networks (GANs),” Radiotherapy and Oncology, vol. 170, pp. S1396–S1397, 5 2022.
  28. S. A. Nehmeh, M. B. Moussa, N. Lee, P. Zanzonico, M. Gönen, J. L. Humm, and H. Schöder, “Comparison of FDG and FMISO uptakes and distributions in head and neck squamous cell cancer tumors,” EJNMMI Research, vol. 11, p. 38, Apr 2021.
  29. P. Kinahan, M. Muzi, B. Bialecki, and L. Coombs, “Data from ACRIN-FMISO-Brain,” 2018.
  30. T. Rohlfing, N. M. Zahr, E. V. Sullivan, and A. Pfefferbaum, “The SRI24 multichannel atlas of normal adult human brain structure,” Hum Brain Mapp, vol. 31, pp. 798–819, May 2010.
  31. X. Sun, L. Shi, Y. Luo, W. Yang, H. Li, P. Liang, K. Li, V. C. T. Mok, W. C. W. Chu, and D. Wang, “Histogram-based normalization technique on human brain magnetic resonance images from different acquisitions,” BioMedical Engineering OnLine, vol. 14, July 2015.
  32. K. K., Basic PET Data Analysis Techniques. InTech, Dec. 2013.
  33. K. Friston, Statistical parametric mapping. Academic Press, Apr. 2011.
  34. A. Fedorov, R. Beichel, J. Kalpathy-Cramer, J. Finet, J.-C. Fillion-Robin, S. Pujol, C. Bauer, D. Jennings, F. Fennessy, M. Sonka, J. Buatti, S. Aylward, J. V. Miller, S. Pieper, and R. Kikinis, “3D slicer as an image computing platform for the quantitative imaging network,” Magn. Reson. Imaging, vol. 30, pp. 1323–1341, Nov. 2012.
  35. K. Kamnitsas, C. Ledig, V. F. J. Newcombe, J. P. Simpson, A. D. Kane, D. K. Menon, D. Rueckert, and B. Glocker, “Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation,” Med. Image Anal., vol. 36, pp. 61–78, Feb. 2017.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com