On Abel's Problem about Logarithmic Integrals in Positive Characteristic (2401.14154v2)
Abstract: Linear differential equations with polynomial coefficients over a field $K$ of positive characteristic $p$ with local exponents in the prime field have a basis of solutions in the differential extension $\mathcal{R}p=K(z_1, z_2, \ldots)(!( x)!)$ of $K(x)$, where $x'=1, z_1'=1/x$ and $z_i'=z{i-1}'/z_{i-1}$. For differential equations of order $1$ it is shown that there exists a solution $y$ whose projections $y\vert_{z_{i+1}=z_{i+2}=\cdots=0}$ are algebraic over the field of rational functions $K(x, z_1, \ldots, z_{i})$ for all $i$. This can be seen as a characteristic $p$ analogue of Abel's problem about the algebraicity of logarithmic integrals. Further, the existence of infinite product representations of these solutions is shown. As a main tool $pi$-curvatures are introduced, generalizing the notion of the $p$-curvature.
- Alin Bostan, Xavier Caruso and Julien Roques “Algebraic Solutions of Linear Differential Equations: An Arithmetic Approach” arXiv, 2023 DOI: 10.48550/arXiv.2304.05061
- Auguste Boulanger “Contribution à l’étude des équations différentielles linéaires et homogènes intégrables algébriquement”, 1897
- Bernard Dwork “Differential Operators with Nilpotent p𝑝pitalic_p-Curvature” In American Journal of Mathematics 112.5, 1990, pp. 749–786 DOI: 10.2307/2374806
- Johannes Faulhaber “Academia Algebrae: darinnen dir miraculosische Guvontiones zu den höchsten Costen weiters continuirt u. profitiert werden” Augspurg: Johann Remmelin, 1631
- “Fuchs’ Theorem on Linear Differential Equations in Arbitrary Characteristic” arXiv, 2023 DOI: 10.48550/arXiv.2307.01712
- Taira Honda “Algebraic Differential Equations” In Symposia Mathematic XXIV (Sym- pos., INDAM, Rome, 1979) London-New York: Academic Press, 1981, pp. 169–204
- Nicholas M. Katz “Algebraic Solutions of Differential Equations (p𝑝pitalic_p-Curvature and the Hodge Filtration)” In Inventiones Mathematicae 18.1-2, 1972, pp. 1–118 DOI: 10.1007/BF01389714
- Oystein Ore “Theory of Non-Commutative Polynomials” In The Annals of Mathematics 34.3, 1933, pp. 480 DOI: 10.2307/1968173
- Robert H. Risch “The Solution of the Problem of Integration in Finite Terms” In Bulletin of the American Mathematical Society 76.3, 1970, pp. 605–608 DOI: 10.1090/S0002-9904-1970-12454-5