2000 character limit reached
Edge-coloring sparse graphs with $Δ$ colors in quasilinear time (2401.13839v4)
Published 24 Jan 2024 in cs.DS
Abstract: In this paper we show that every graph $G$ of bounded maximum average degree ${\rm mad}(G)$ and with maximum degree $\Delta$ can be edge-colored using the optimal number of $\Delta$ colors in quasilinear time, whenever $\Delta\ge 2{\rm mad}(G)$. The maximum average degree is within a multiplicative constant of other popular graph sparsity parameters like arboricity, degeneracy or maximum density. Our algorithm extends previous results of Chrobak and Nishizeki [J. Algorithms, 1990] and Bhattacharya, Costa, Panski and Solomon [ESA 2024].
- Anton Bernshteyn. A fast distributed algorithm for (Δ+1)Δ1(\Delta+1)( roman_Δ + 1 )-edge-coloring. J. Comb. Theory, Ser. B, 152:319–352, 2022. URL: https://doi.org/10.1016/j.jctb.2021.10.004, doi:10.1016/J.JCTB.2021.10.004.
- Fast algorithms for Vizing’s theorem on bounded degree graphs. CoRR, abs/2303.05408, 2023. URL: https://doi.org/10.48550/arXiv.2303.05408, arXiv:2303.05408, doi:10.48550/ARXIV.2303.05408.
- Arboricity-dependent algorithms for edge coloring. CoRR, abs/2311.08367, 2023. URL: https://doi.org/10.48550/arXiv.2311.08367, arXiv:2311.08367, doi:10.48550/ARXIV.2311.08367.
- Density-sensitive algorithms for (ΔΔ\Deltaroman_Δ+1)-edge coloring. CoRR, abs/2307.02415, 2023. arXiv:2307.02415.
- Average degrees of edge-chromatic critical graphs. Discrete Mathematics, 342(6):1613–1623, 2019. doi:https://doi.org/10.1016/j.disc.2019.02.014.
- Sparsity-parameterised dynamic edge colouring. CoRR, abs/2311.10616, 2023. URL: https://doi.org/10.48550/arXiv.2311.10616, arXiv:2311.10616, doi:10.48550/ARXIV.2311.10616.
- Aleksander Bjørn Grodt Christiansen. The power of multi-step Vizing chains. In Barna Saha and Rocco A. Servedio, editors, Proceedings of the 55th Annual ACM Symposium on Theory of Computing, STOC 2023, Orlando, FL, USA, June 20-23, 2023, pages 1013–1026. ACM, 2023. doi:10.1145/3564246.3585105.
- Improved edge-coloring algorithms for planar graphs. J. Algorithms, 11(1):102–116, 1990. doi:10.1016/0196-6774(90)90032-A.
- Fast algorithms for edge-coloring planar graphs. J. Algorithms, 10(1):35–51, 1989. doi:10.1016/0196-6774(89)90022-9.
- New linear-time algorithms for edge-coloring planar graphs. Algorithmica, 50(3):351–368, 2008. URL: https://doi.org/10.1007/s00453-007-9044-3, doi:10.1007/S00453-007-9044-3.
- Edge-coloring bipartite multigraphs in O(ElogD)𝑂𝐸𝐷O(E\log D)italic_O ( italic_E roman_log italic_D ) time. Comb., 21(1):5–12, 2001. URL: https://doi.org/10.1007/s004930170002, doi:10.1007/S004930170002.
- An introduction to the discharging method via graph coloring. Discrete Mathematics, 340(4):766–793, 2017. URL: https://www.sciencedirect.com/science/article/pii/S0012365X1630379X, doi:https://doi.org/10.1016/j.disc.2016.11.022.
- Dynamic edge coloring with improved approximation. In Timothy M. Chan, editor, Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pages 1937–1945. SIAM, 2019. doi:10.1137/1.9781611975482.117.
- Deterministic simple (1+ε)δ1𝜀𝛿(1+\varepsilon)\delta( 1 + italic_ε ) italic_δ-edge-coloring in near-linear time, 2024. arXiv:2401.10538.
- Stanley Fiorini. Some remarks on a paper by Vizing on critical graphs. Mathematical Proceedings of the Cambridge Philosophical Society, 77(3):475–483, 1975. doi:10.1017/S030500410005129X.
- Algorithms for edge-coloring graphs. Technical report, Tel Aviv University, 1985. URL: https://www.ecei.tohoku.ac.jp/alg/nishizeki/sub/e/Edge-Coloring.pdf.
- Dawit Haile. Bounds on the size of critical edge-chromatic graphs. Ars Comb., 53:85–96, 1999.
- Ian Holyer. The NP-completeness of edge-coloring. SIAM J. Comput., 10(4):718–720, 1981. doi:10.1137/0210055.
- Lukasz Kowalik. Approximation scheme for lowest outdegree orientation and graph density measures. In Tetsuo Asano, editor, Algorithms and Computation, 17th International Symposium, ISAAC 2006, Kolkata, India, December 18-20, 2006, Proceedings, volume 4288 of Lecture Notes in Computer Science, pages 557–566. Springer, 2006. doi:10.1007/11940128\_56.
- William Kuszmaul and Qi Qi. The multiplicative version of Azuma’s inequality, with an application to contention analysis. CoRR, abs/2102.05077, 2021. URL: https://arxiv.org/abs/2102.05077, arXiv:2102.05077.
- On the size of edge chromatic critical graphs. J. Comb. Theory, Ser. B, 86(2):408–412, 2002. URL: https://doi.org/10.1006/jctb.2002.2135, doi:10.1006/JCTB.2002.2135.
- Corwin Sinnamon. Fast and simple edge-coloring algorithms. CoRR, abs/1907.03201, 2019. arXiv:1907.03201.
- Graph edge coloring: Vizing’s theorem and Goldberg’s conjecture. Wiley Hoboken, NJ, Hoboken, NJ, 2012.
- Vadim G. Vizing. On the estimate of the chromatic class of a p𝑝pitalic_p-graph. Diskret. Analiz, 3:25–30, 1964.
- Vadim G. Vizing. Critical graphs with a given chromatic number. Diskret. Analiz, 5:9–17, 1965.
- Vadim G. Vizing. Some unsolved problems in graph theory (in Russian). Uspeki Mat. Nauk., 23:117–134, 1968. English translation in [Russian Mathematical Surveys 23 (1968), 125-141].
- Douglas R. Woodall. The average degree of an edge-chromatic critical graph II. Journal of Graph Theory, 56(3):194–218, 2007. doi:https://doi.org/10.1002/jgt.20259.
- Douglas R. Woodall. Erratum: The average degree of an edge-chromatic critical graph II. Journal of Graph Theory, 92(4):488–490, 2019. doi:https://doi.org/10.1002/jgt.22501.
- Edge-coloring partial k𝑘kitalic_k-trees. Journal of Algorithms, 21(3):598–617, 1996. URL: https://www.sciencedirect.com/science/article/pii/S0196677496900619, doi:https://doi.org/10.1006/jagm.1996.0061.