Searching in trees with monotonic query times (2401.13747v1)
Abstract: We consider the following generalization of binary search in sorted arrays to tree domains. In each step of the search, an algorithm is querying a vertex $q$, and as a reply, it receives an answer, which either states that $q$ is the desired target, or it gives the neighbor of $q$ that is closer to the target than $q$. A further generalization assumes that a vertex-weight function $\omega$ gives the query costs, i.e., the cost of querying $q$ is $\omega(q)$. The goal is to find an adaptive search strategy requiring the minimum cost in the worst case. This problem is NP-complete for general weight functions and one of the challenging open questions is whether there exists a polynomial-time constant factor approximation algorithm for an arbitrary tree? In this work, we prove that there exist a constant-factor approximation algorithm for trees with a monotonic cost function, i.e., when the tree has a vertex $v$ such that the weights of the subsequent vertices on the path from $v$ to any leaf give a monotonic (non-increasing or non-decreasing) sequence $S$. This gives a constant factor approximation algorithm for trees with cost functions such that each such sequence $S$ has a fixed number of monotonic segments. Finally, we combine several earlier results to show that the problem is NP-complete when the number of monotonic segments in $S$ is at least $4$.
- A model for hierarchical memory. In STOC 1987, pages 305–314, 1987. doi:10.1145/28395.28428.
- Haris Angelidakis. Shortest path queries, graph partitioning and covering problems in worst and beyond worst case settings. CoRR, abs/1807.09389, 2018. arXiv:1807.09389.
- Optimal search in trees. SIAM J. Comput., 28(6):2090–2102, 1999. doi:10.1137/S009753979731858X.
- Splay trees on trees. In SODA 2022, pages 1875–1900, 2022. doi:10.1137/1.9781611977073.75.
- The geometry of tree-based sorting. In ICALP 2023, pages 26:1–26:19, 2023. doi:10.4230/LIPICS.ICALP.2023.26.
- Navigating in trees with permanently noisy advice. ACM Trans. Algorithms, 17(2):15:1–15:27, 2021. doi:10.1145/3448305.
- Approximating treewidth, pathwidth, and minimum elimination tree height. In WG 1991, pages 1–12, 1991. doi:10.1007/3-540-55121-2_1.
- The complexity of bicriteria tree-depth. In FCT 2021, pages 100–113, 2021. doi:10.1007/978-3-030-86593-1_7.
- Binary identification problems for weighted trees. In WADS 2011, pages 255–266, 2011. doi:10.1007/978-3-642-22300-6_22.
- On the tree search problem with non-uniform costs. Theor. Comput. Sci., 647:22–32, 2016. doi:10.1016/j.tcs.2016.07.019.
- Binary search in graphs revisited. Algorithmica, 81(5):1757–1780, 2019. doi:10.1007/S00453-018-0501-Y.
- Dariusz Dereniowski. Edge ranking of weighted trees. Discret. Appl. Math., 154(8):1198–1209, 2006. doi:10.1016/j.dam.2005.11.005.
- Dariusz Dereniowski. Edge ranking and searching in partial orders. Discret. Appl. Math., 156(13):2493–2500, 2008. doi:10.1016/j.dam.2008.03.007.
- Approximation strategies for generalized binary search in weighted trees. In ICALP 2017, pages 84:1–84:14, 2017. doi:10.4230/LIPIcs.ICALP.2017.84.
- Cholesky factorization of matrices in parallel and ranking of graphs. In PPAM 2003, pages 985–992, 2003. doi:10.1007/978-3-540-24669-5_127.
- Efficient parallel query processing by graph ranking. Fundam. Informaticae, 69(3):273–285, 2006.
- An efficient noisy binary search in graphs via median approximation. In IWOCA 2021, pages 265–281, 2021. doi:10.1007/978-3-030-79987-8_19.
- Vertex rankings of chordal graphs and weighted trees. Inf. Process. Lett., 98(3):96–100, 2006. doi:10.1016/j.ipl.2005.12.006.
- A framework for searching in graphs in the presence of errors. In SOSA@SODA 2019, pages 4:1–4:17, 2019. doi:10.4230/OASIcs.SOSA.2019.4.
- Constant-factor approximation algorithm for binary search in trees with monotonic query times. In MFCS 2022, pages 42:1–42:15, 2022. doi:10.4230/LIPIcs.MFCS.2022.42.
- A general framework for robust interactive learning. In NIPS 2017, pages 7082–7091, 2017.
- Interactive learning of a dynamic structure. In ALT 2020, pages 277–296, 2020.
- Deterministic and probabilistic binary search in graphs. In STOC 2016, pages 519–532, 2016. doi:10.1145/2897518.2897656.
- Lifo-search: A min-max theorem and a searching game for cycle-rank and tree-depth. Discrete Applied Mathematics, 160(15):2089–2097, 2012. doi:10.1016/j.dam.2012.03.015.
- Ryusuke Hohzaki. Search games: Literature and survey. Journal of the Operations Research Society of Japan, 59(1):1–34, 2016. doi:10.15807/jorsj.59.1.
- Optimal node ranking of trees. Inf. Process. Lett., 28(5):225–229, 1988. doi:10.1016/0020-0190(88)90194-9.
- On an edge ranking problem of trees and graphs. Discret. Appl. Math., 30(1):43–52, 1991. doi:10.1016/0166-218X(91)90012-L.
- Ordered colourings. Discret. Math., 142(1-3):141–154, 1995. doi:10.1016/0012-365X(93)E0216-Q.
- Donald E. Knuth. The Art of Computer Programming, Volume III: Sorting and Searching. Addison-Wesley, 1973.
- On binary searching with nonuniform costs. SIAM J. Comput., 31(4):1022–1047, 2002. doi:10.1137/S0097539700381991.
- An approximation algorithm for binary searching in trees. Algorithmica, 59(4):601–620, 2011. doi:10.1007/s00453-009-9325-0.
- Optimal edge ranking of trees in linear time. In SODA 1998, pages 436–445, 1998.
- On minimum edge ranking spanning trees. J. Algorithms, 38(2):411–437, 2001. doi:10.1006/jagm.2000.1143.
- Np-hardness proof and an approximation algorithm for the minimum vertex ranking spanning tree problem. Discret. Appl. Math., 154(16):2402–2410, 2006. doi:10.1016/j.dam.2006.04.016.
- Finding an optimal tree searching strategy in linear time. In SODA 2008, pages 1096–1105, 2008.
- Binary searching with nonuniform costs and its application to text retrieval. Algorithmica, 27(2):145–169, 2000. doi:10.1007/s004530010010.
- Tree-depth, subgraph coloring and homomorphism bounds. Eur. J. Comb., 27(6):1022–1041, 2006. doi:10.1016/j.ejc.2005.01.010.
- Generalization of binary search: Searching in trees and forest-like partial orders. In FOCS 2006, pages 379–388, 2006. doi:10.1109/FOCS.2006.32.
- Andrzej Pelc. Searching games with errors — fifty years of coping with liars. Theor. Comput. Sci., 270(1-2):71–109, 2002. doi:10.1016/S0304-3975(01)00303-6.
- Artificial Intelligence - A Modern Approach, Third International Edition. Pearson Education, 2010.
- The future is big graphs: a community view on graph processing systems. Commun. ACM, 64(9):62–71, 2021. doi:10.1145/3434642.
- Alejandro A. Schäffer. Optimal node ranking of trees in linear time. Inf. Process. Lett., 33(2):91–96, 1989. doi:10.1016/0020-0190(89)90161-0.
- On a graph partition problem with application to VLSI layout. Inf. Process. Lett., 43(2):87–94, 1992. doi:10.1016/0020-0190(92)90017-P.
- Generalized edge-ranking of trees (extended abstract). In WG 1996, pages 390–404, 1996. doi:10.1007/3-540-62559-3_31.
- Generalized vertex-rankings of trees. Inf. Process. Lett., 56(6):321–328, 1995. doi:10.1016/0020-0190(95)00172-7.