Enhanced quantum control of individual ultracold molecules using optical tweezer arrays (2401.13593v2)
Abstract: Control over the quantum states of individual molecules is crucial in the quest to harness their rich internal structure and dipolar interactions for applications in quantum science. In this paper, we develop a toolbox of techniques for the control and readout of individually trapped polar molecules in an array of optical tweezers. Starting with arrays of up to eight Rb and eight Cs atoms, we assemble arrays of RbCs molecules in their rovibrational and hyperfine ground state with an overall efficiency of 48(2)%. We demonstrate global microwave control of multiple rotational states of the molecules and use an auxiliary tweezer array to implement site-resolved addressing and state control. We show how the rotational state of the molecule can be mapped onto the position of Rb atoms and use this capability to readout multiple rotational states in a single experimental run. Further, using a scheme for the mid-sequence detection of molecule formation errors, we perform rearrangement of assembled molecules to prepare small defect-free arrays. Finally, we discuss a feasible route to scaling to larger arrays of molecules.
- J. L. Bohn, A. M. Rey, and J. Ye, Cold molecules: progress in quantum engineering of chemistry and quantum matter, Science 357, 1002 (2017).
- T. P. Softley, Cold and ultracold molecules in the twenties, Proc. R. Soc. A: Math. Phys. Eng. Sci. 479, 20220806 (2023).
- W. Lechner and P. Zoller, From classical to quantum glasses with ultracold polar molecules, Phys. Rev. Lett. 111, 185306 (2013).
- D. DeMille, Quantum computation with trapped polar molecules, Phys. Rev. Lett. 88, 067901 (2002).
- S. F. Yelin, K. Kirby, and R. Côté, Schemes for robust quantum computation with polar molecules, Phys. Rev. A 74, 050301(R) (2006).
- K.-K. Ni, T. Rosenband, and D. D. Grimes, Dipolar exchange quantum logic gate with polar molecules, Chem. Sci. 9, 6830 (2018).
- V. V. Albert, J. P. Covey, and J. Preskill, Robust encoding of a qubit in a molecule, Phys. Rev. X 10, 031050 (2020).
- R. V. Krems, Cold controlled chemistry, Phys. Chem. Chem. Phys. 10, 4079 (2008).
- B. R. Heazlewood and T. P. Softley, Towards chemistry at absolute zero, Nat. Rev. Chem. 5, 125 (2021).
- Y. Liu and K.-K. Ni, Bimolecular chemistry in the ultracold regime, Annu. Rev. Phys. Chem. 73, 73 (2022).
- S. Schiller and V. Korobov, Tests of time independence of the electron and nuclear masses with ultracold molecules, Phys. Rev. A 71, 032505 (2005).
- C. Chin, V. V. Flambaum, and M. G. Kozlov, Ultracold molecules: new probes on the variation of fundamental constants, New J. Phys. 11, 055048 (2009).
- C. M. Holland, Y. Lu, and L. W. Cheuk, On-demand entanglement of molecules in a reconfigurable optical tweezer array, Science 382, 1143 (2023a).
- B. Sundar, B. Gadway, and K. R. A. Hazzard, Synthetic dimensions in ultracold polar molecules, Sci. Rep. 8, 3422 (2018).
- S. L. Cornish, M. R. Tarbutt, and K. R. A. Hazzard, Quantum computation and quantum simulation with ultracold molecules (2024), arXiv:2401.05086v1 [cond-mat.quant-gas] .
- N. Schlosser, G. Reymond, and P. Grangier, Collisional blockade in microscopic optical dipole traps, Phys. Rev. Lett. 89, 023005 (2002).
- A. M. Kaufman and K.-K. Ni, Quantum science with optical tweezer arrays of ultracold atoms and molecules, Nat. Phys. 17, 1324 (2021).
- W. Lee, H. Kim, and J. Ahn, Three-dimensional rearrangement of single atoms using actively controlled optical microtraps, Opt. Express 24, 9816 (2016).
- A. Browaeys and T. Lahaye, Many-body physics with individually controlled Rydberg atoms, Nat. Phys. 16, 132 (2020).
- C. M. Holland, Y. Lu, and L. W. Cheuk, Bichromatic imaging of single molecules in an optical tweezer array, Phys. Rev. Lett. 131, 053202 (2023b).
- T. Köhler, K. Góral, and P. S. Julienne, Production of cold molecules via magnetically tunable feshbach resonances, Rev. Mod. Phys. 78, 1311 (2006).
- K. Bergmann, H. Theuer, and B. Shore, Coherent population transfer among quantum states of atoms and molecules, Rev. Mod. Phys. 70, 1003 (1998).
- S. J. Spence, Assembling single RbCs molecules with optical tweezers, Ph.D. thesis, Durham University (2023).
- O. Dulieu, Private communication.
- R. V. Brooks, Control and Collisions of 8787{}^{87}start_FLOATSUPERSCRIPT 87 end_FLOATSUPERSCRIPTRb and 133133{}^{133}start_FLOATSUPERSCRIPT 133 end_FLOATSUPERSCRIPTCs Atoms in Optical Tweezers, Ph.D. thesis, Durham University (2022).
- S. L. Cornish et al. (in preparation).
- A. Micheli, G. Brennen, and P. Zoller, A toolbox for lattice-spin models with polar molecules, Nat. Phys. 2, 341 (2006).
- S. Kotochigova and E. Tiesinga, Ab initio relativistic calculation of the rbcs molecule, J. Chem. Phys. 123, 174304 (2005).
- R. Raussendorf and H. J. Briegel, A one-way quantum computer, Phys. Rev. Lett. 86, 5188 (2001).
- M. Zeppenfeld, Nondestructive detection of polar molecules via Rydberg atoms, EPL 118, 13002 (2017).
- C. Zhang and M. R. Tarbutt, Quantum computation in a hybrid array of molecules and Rydberg atoms, PRX Quantum 3, 030340 (2022).
- T. Rosenband and D. R. Leibrandt, Exponential scaling of clock stability with atom number (2013), arXiv:1303.6357 [quant-ph] .
- P. Shor, Fault-tolerant quantum computation, in Proceedings of 37th Conference on Foundations of Computer Science (1996) pp. 56–65.
- A. Steane, Multiple-particle interference and quantum error correction, Proc. R. Soc. A: Math. Phys. Eng. Sci. 452, 2551 (1996).
- K.-K. Ni, Private communication.
- P. A. Ivanov, N. V. Vitanov, and K. Bergmann, Effect of dephasing on stimulated raman adiabatic passage, Phys. Rev. A 70, 063409 (2004).