Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tensor train based sampling algorithms for approximating regularized Wasserstein proximal operators (2401.13125v2)

Published 23 Jan 2024 in math.OC, cs.NA, and math.NA

Abstract: We present a tensor train (TT) based algorithm designed for sampling from a target distribution and employ TT approximation to capture the high-dimensional probability density evolution of overdamped Langevin dynamics. This involves utilizing the regularized Wasserstein proximal operator, which exhibits a simple kernel integration formulation, i.e., the softmax formula of the traditional proximal operator. The integration, performed in $\mathbb{R}d$, poses a challenge in practical scenarios, making the algorithm practically implementable only with the aid of TT approximation. In the specific context of Gaussian distributions, we rigorously establish the unbiasedness and linear convergence of our sampling algorithm towards the target distribution. To assess the effectiveness of our proposed methods, we apply them to various scenarios, including Gaussian families, Gaussian mixtures, bimodal distributions, and Bayesian inverse problems in numerical examples. The sampling algorithm exhibits superior accuracy and faster convergence when compared to classical Langevin dynamics-type sampling algorithms.

Citations (2)

Summary

We haven't generated a summary for this paper yet.