Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Late-time tails for scale-invariant wave equations with a potential and the near-horizon geometry of null infinity (2401.13047v1)

Published 23 Jan 2024 in math.AP, gr-qc, math-ph, and math.MP

Abstract: We provide a definitive treatment, including sharp decay and the precise late-time asymptotic profile, for generic solutions of linear wave equations with a (singular) inverse-square potential in (3+1)-dimensional Minkowski spacetime. Such equations are scale-invariant and we show their solutions decay in time at a rate determined by the coefficient in the inverse-square potential. We present a novel, geometric, physical-space approach for determining late-time asymptotics, based around embedding Minkowski spacetime conformally into the spacetime $AdS_2 \times \mathbb{S}2$ (with $AdS_2$ the two-dimensional anti de-Sitter spacetime) to turn a global late-time asymptotics problem into a local existence problem for the wave equation in $AdS_2 \times \mathbb{S}2$. Our approach is inspired by the treatment of the near-horizon geometry of extremal black holes in the physics literature. We moreover apply our method to another scale-invariant model: the (complex-valued) charged wave equation on Minkowski spacetime in the presence of a static electric field, which can be viewed as a simplification of the charged Maxwell-Klein-Gordon equations on a black hole spacetime.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (47)
  1. Late-time asymptotics for the wave equation on spherically symmetric, stationary spacetimes. Adv. Math., 323:529–621, 2018.
  2. Late-time asymptotics for the wave equation on extremal Reissner-Nordström backgrounds. Adv. Math., 375:107363, 139, 2020.
  3. Late-time tails and mode coupling of linear waves on Kerr spacetimes. Adv. Math., 417:108939, 2023.
  4. Price’s law and precise late-time asymptotics for subextremal Reissner-Nordström black holes. Annales Henri Poincaré, pages 1–73, 2023.
  5. Price’s law on Minkowski space in the presence of an inverse square potential. ArXiv Preprint: http://arxiv.org/abs/2207.06513, 2022.
  6. Strichartz estimates for the wave and Schrödinger equations with the inverse-square potential. J. Funct. Anal., 203(2):519–549, 2003.
  7. Strichartz estimates for the wave and Schrödinger equations with potentials of critical decay. Indiana Univ. Math. J., 53(6):1665–1680, 2004.
  8. Asymptotic behavior of the Maxwell-Klein-Gordon system. Comm. Math. Phys., 367(2):683–716, 2019.
  9. Horizon instability of extremal Kerr black holes: nonaxisymmetric modes and enhanced growth rate. Phys. Rev. D, 94(6):064003, 8, 2016.
  10. Demetrios Christodoulou. Mathematical problems of general relativity. I. Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich, 2008.
  11. Semiclassical analysis of low and zero energy scattering for one-dimensional Schrödinger operators with inverse square potentials. J. Funct. Anal., 255(9):2321–2362, 2008.
  12. Conformal invariance under spatial inversion of extreme Reissner-Nordström black holes. General relativity and gravitation, 16:789–792, 1984.
  13. A proof of Price’s law for the collapse of a self-gravitating scalar field. Invent. Math., 162(2):381–457, 2005.
  14. A vector field method on the distorted Fourier side and decay for wave equations with potentials. Mem. Amer. Math. Soc., 241(1142):v+80, 2016.
  15. On pointwise decay of linear waves on a schwarzschild black hole background. Comm. Math. Phys., 309:51–86, 2012.
  16. A proof of Price’s law on Schwarzschild black hole manifolds for all angular momenta. Adv. Math., 226(1):484–540, 2011.
  17. Lawrence C. Evans. Partial differential equations, volume 19 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, second edition, 2010.
  18. Dejan Gajic. Azimuthal instabilities on extremal Kerr. arXiv preprint arXiv:2302.06636, 2023.
  19. Dejan Gajic. Late-time asymptotics for geometric wave equations with inverse-square potentials. J. Funct. Anal., page 110058, 2023.
  20. Dejan Gajic and Maxime Van de Moortel. Sharp decay estimates and late-time tails for charged scalar fields on black hole backgrounds (working title). In preparation.
  21. Quasinormal modes in extremal Reissner-Nordström spacetimes. Comm. Math. Phys., 385(3):1395–1498, 2021.
  22. Scaling and universality in extremal black hole perturbations. J. High Energy Phys., (6):061, 2018.
  23. Is there a breakdown of effective field theory at the horizon of an extremal black hole? J. High Energy Phys., (12):062, 2017.
  24. Peter Hintz. A sharp version of Price’s law for wave decay on asymptotically flat spacetimes. Comm. Math. Phys., 389:491–542, 2022.
  25. Peter Hintz. Linear waves on asymptotically flat spacetimes. I. ArXiv Preprint: http://arxiv.org/abs/2302.14647, 2023.
  26. Late-time evolution of charged gravitational collapse and decay of charged scalar hair. II. Phys. Rev. D (3), 58(2):024018, 6, 1998.
  27. Mass inflation in dynamical gravitational collapse of a charged scalar field. Phys. Rev. Lett., 81:1554–1557, 1998.
  28. Jonathan Kommemi. The global structure of spherically symmetric charged scalar field spacetimes. Comm. Math. Phys., 323(1):35–106, 2013.
  29. Global stability for charged-scalar fields on Minkowski space. International Mathematics Research Papers, 2006:52976, 2006.
  30. Shi-Zhuo Looi. Pointwise decay for the wave equation on nonstationary spacetimes. Journal of Mathematical Analysis and Applications, page 126939, 2022.
  31. Jonathan Luk. Singularities in general relativity. Proceedings of the International Congress of Mathematicians 2022, 2022.
  32. Price’s law on nonstationary space-times. Adv. Math., 230(3):995–1028, 2012.
  33. Katrina Morgan. The effect of metric behavior at spatial infinity on pointwise wave decay in the asymptotically flat stationary setting. ArXiv preprint: https://www.arxiv.org/abs/2006.11324, 2020. To appear in American Journal of Mathematics.
  34. Generalized Price’s law on fractional-order asymptotically flat stationary spacetimes. ArXiv preprint: https://www.arxiv.org/abs/2105.02305, 2021.
  35. Dispersive estimate for the wave equation with the inverse-square potential. Discrete Contin. Dyn. Syst., 9(6):1387–1400, 2003.
  36. Richard H. Price. Nonspherical perturbations of relativistic gravitational collapse. I. Scalar and gravitational perturbations. Phys. Rev. D (3), 5:2419–2438, 1972.
  37. Wilhelm Schlag. On pointwise decay of waves. J. Math. Phys., 62(6):Paper No. 061509, 27, 2021.
  38. Wei-Tong Shu. Asymptotic properties of the solutions of linear and nonlinear spin field equations in Minkowski space. Comm. Math. Phys., 140(3):449–480, 1991.
  39. Daniel Tataru. Local decay of waves on asymptotically flat stationary space-times. Amer. J. Math., 130(3):571–634, 2008.
  40. Maxime Van de Moortel. Stability and instability of the sub-extremal Reissner-Nordström black hole interior for the Einstein-Maxwell-Klein-Gordon equations in spherical symmetry. Comm. Math. Phys., 360(1):103–168, 2018.
  41. Maxime Van de Moortel. The breakdown of weak null singularities inside black holes. ArXiv preprint: https://www.arxiv.org/abs/1912.10890, 2020. To appear in Duke Mathematical Journal.
  42. Maxime Van de Moortel. Mass inflation and the C2superscript𝐶2C^{2}italic_C start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT-inextendibility of spherically symmetric charged scalar field dynamical black holes. Comm. Math. Phys., 382(2):1263–1341, 2021.
  43. Maxime Van de Moortel. Decay of weakly charged solutions for the spherically symmetric Maxwell-charged-scalar-field equations on a Reissner-Nordström exterior space-time. Ann. Sci. Éc. Norm. Supér. (4), 55(2):283–404, 2022.
  44. Claude Warnick. The massive wave equation in asymptotically AdS spacetimes. Comm. Math. Phys., 321(1):85–111, 2013.
  45. Shiwu Yang. Decay of solutions of Maxwell-Klein-Gordon equations with arbitrary Maxwell field. Anal. PDE, 9(8):1829–1902, 2016.
  46. On global dynamics of the Maxwell-Klein-Gordon equations. Camb. J. Math., 7(4):365–467, 2019.
  47. Peter Zimmerman. Horizon instability of extremal Reissner-Nordström black holes to charged perturbations. Phys. Rev. D, 95(12):124032, 9, 2017.
Citations (1)

Summary

We haven't generated a summary for this paper yet.