Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Thermal conductivity of Li$_3$PS$_4$ solid electrolytes with ab initio accuracy (2401.12936v3)

Published 23 Jan 2024 in cond-mat.mtrl-sci

Abstract: The vast amount of computational studies on electrical conduction in solid-state electrolytes is not mirrored by comparable efforts addressing thermal conduction, which has been scarcely investigated despite its relevance to thermal management and (over)heating of batteries. The reason for this lies in the complexity of the calculations: on one hand, the diffusion of ionic charge carriers makes lattice methods formally unsuitable, due to the lack of equilibrium atomic positions needed for normal-mode expansion. On the other hand, the prohibitive cost of large-scale molecular dynamics (MD) simulations of heat transport in large systems at ab initio levels has hindered the use of MD-based methods. In this paper, we leverage recently developed machine-learning potentials targeting different ab initio functionals (PBEsol, r$2$SCAN, PBE0) and a state-of-the-art formulation of the Green-Kubo theory of heat transport in multicomponent systems to compute the thermal conductivity of a promising solid-state electrolyte, Li$_3$PS$_4$, in all its polymorphs ($\alpha$, $\beta$, and $\gamma$). By comparing MD estimates with lattice methods on the low-temperature, nondiffusive $\gamma$-Li$_3$PS$_4$, we highlight strong anharmonicities and negligible nuclear quantum effects, hence further justifying MD-based methods even for nondiffusive phases. Finally, for the ion-conducting $\alpha$ and $\beta$ phases, where the multicomponent Green-Kubo MD approach is mandatory, our simulations indicate a weak temperature dependence of the thermal conductivity, a glass-like behavior due to the effective local disorder characterizing these Li-diffusing phases.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (32)
  1. M. Simoncelli, N. Marzari, and F. Mauri, Unified theory of thermal transport in crystals and glasses, Nat. Phys. 15, 809 (2019).
  2. A. Fiorentino and S. Baroni, From Green-Kubo to the full Boltzmann kinetic approach to heat transport in crystals and glasses, Phys. Rev. B 107, 054311 (2023).
  3. A. Marcolongo, P. Umari, and S. Baroni, Microscopic theory and quantum simulation of atomic heat transport, Nature Physics 12, 80 (2016).
  4. J. Kang and L.-W. Wang, First-principles green-kubo method for thermal conductivity calculations, Phys. Rev. B 96, 020302 (2017).
  5. C. Carbogno, R. Ramprasad, and M. Scheffler, Ab initio green-kubo approach for the thermal conductivity of solids, Phys. Rev. Lett. 118, 175901 (2017).
  6. J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77, 3865 (1996).
  7. C. Adamo and V. Barone, Toward reliable density functional methods without adjustable parameters: The PBE0 model, J. Chem. Phys. 110, 6158 (1999).
  8. A. P. Bartók, R. Kondor, and G. Csányi, On representing chemical environments, Phys. Rev. B 87, 184115 (2013).
  9. F. D. Murnaghan, Finite deformations of an elastic solid, American Journal of Mathematics 59, 235 (1937).
  10. M. S. Green, Markoff random processes and the statistical mechanics of time-dependent phenomena, II. Irreversible processes in fluids, J. Chem. Phys. 22, 398 (1954).
  11. R. Kubo, Statistical-mechanical theory of irreversible processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems, J. Phys. Soc. Jpn. 12, 570 (1957).
  12. J. H. Irving and J. G. Kirkwood, The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics, The Journal of Chemical Physics 18, 817 (2004).
  13. M. F. Langer, J. T. Frank, and F. Knoop, Stress and heat flux via automatic differentiation, The Journal of Chemical Physics 159, 174105 (2023b).
  14. P. Lindan and M. Gillan, A molecular dynamics study of the thermal conductivity of CaF22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT and UO22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT, Journal of Physics: Condensed Matter 3, 3929 (1991).
  15. N. Wiener, Generalized harmonic analysis, Acta mathematica 55, 117 (1930).
  16. A. Khintchine, Korrelationstheorie der stationären stochastischen prozesse, Math. Ann. 109, 604 (1934).
  17. F. Grasselli  and S. Baroni, Invariance principles in the theory and computation of transport coefficients, European Physical Journal B 94, 160 (2021), 2105.02137 .
  18. A. Marcolongo, L. Ercole, and S. Baroni, Gauge fixing for heat-transport simulations, Journal of Chemical Theory and Computation 16, 3352 (2020).
  19. Equation (3\@@italiccorr) is obtained by enforcing Newton’s second law, hence the use of a single trajectory is justified only when the spread in the forces predicted by the committee members vanishes.
  20. L. Ercole, A. Marcolongo, and S. Baroni, Accurate thermal conductivities from optimally short molecular dynamics simulations, Scientific reports 7, 15835 (2017).
  21. F. Grasselli, L. Stixrude, and S. Baroni, Heat and charge transport in H22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPTO at ice-giant conditions from ab initio molecular dynamics simulations, Nature Communications 11, 3605 (2020).
  22. P. Pegolo, S. Baroni, and F. Grasselli, Temperature-and vacancy-concentration-dependence of heat transport in Li33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPTClO from multi-method numerical simulations, npj Comput. Mater. 8, 24 (2022).
  23. P. Pegolo, S. Baroni, and F. Grasselli, Self-interaction and transport of solvated electrons in molten salts, The Journal of Chemical Physics 159, 094116 (2023).
  24. Reference 11 shows that QHGK is equivalent to the Wigner transport equation formulated in Refs. 9, 10.
  25. G. Bussi, D. Donadio, and M. Parrinello, Canonical sampling through velocity rescaling, J. Chem. Phys. 126, 14101 (2007).
  26. M. Ceriotti, G. Bussi, and M. Parrinello, Langevin Equation with Colored Noise for Constant-Temperature Molecular Dynamics Simulations, Phys. Rev. Lett. 102, 020601 (2009).
  27. P. B. Allen and J. L. Feldman, Thermal conductivity of disordered harmonic solids, Phys. Rev. B 48, 12581 (1993).
  28. G. Pastore, E. Smargiassi, and F. Buda, Theory of ab initio molecular-dynamics calculations, Phys. Rev. A 44, 6334 (1991).
  29. F. Knoop, M. Scheffler, and C. Carbogno, Ab initio Green-Kubo simulations of heat transport in solids: Method and implementation, Phys. Rev. B 107, 224304 (2023b).
  30. L. Kahle, A. Marcolongo, and N. Marzari, High-throughput computational screening for solid-state Li-ion conductors, Energy & Environmental Science 13, 928 (2020).
  31. European Organization For Nuclear Research and OpenAIRE, Zenodo (2013).
  32. G. Materzanini, T. Chiarotti, and N. Marzari, Solids that are also liquids: elastic tensors of superionic materials, npj Computational Materials 9, 10 (2023).
Citations (1)

Summary

We haven't generated a summary for this paper yet.