Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ESC: Edge-attributed Skyline Community Search in Large-scale Bipartite Graphs (2401.12895v1)

Published 23 Jan 2024 in cs.SI and cs.GR

Abstract: Due to the ability of modeling relationships between two different types of entities, bipartite graphs are naturally employed in many real-world applications. Community Search in bipartite graphs is a fundamental problem and has gained much attention. However, existing studies focus on measuring the structural cohesiveness between two sets of vertices, while either completely ignoring the edge attributes or only considering one-dimensional importance in forming communities. In this paper, we introduce a novel community model, named edge-attributed skyline community (ESC), which not only preserves the structural cohesiveness but unravels the inherent dominance brought about by multi-dimensional attributes on the edges of bipartite graphs. To search the ESCs, we develop an elegant peeling algorithm by iteratively deleting edges with the minimum attribute in each dimension. In addition, we also devise a more efficient expanding algorithm to further reduce the search space and speed up the filtering of unpromising vertices, where a upper bound is proposed and proven. Extensive experiments on real-world large-scale datasets demonstrate the efficiency, effectiveness, and scalability of the proposed ESC search algorithms. A case study was conducted to compare with existing community models, substantiating that our approach facilitates the precision and diversity of results.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (56)
  1. W. Cui, Y. Xiao, H. Wang, and W. Wang, “Local search of communities in large graphs,” in SIGMOD, 2014, pp. 991–1002.
  2. R. Li, L. Qin, J. X. Yu, and R. Mao, “Influential community search in large networks,” PVLDB, vol. 8, no. 5, pp. 509–520, 2015.
  3. Y. Fang, R. Cheng, X. Li, S. Luo, and J. Hu, “Effective community search over large spatial graphs.” PVLDB, vol. 10, no. 6, pp. 709–720, 2017.
  4. Y. Fang, R. Cheng, Y. Chen, S. Luo, and J. Hu, “Effective and efficient attributed community search,” VLDB Journal, vol. 26, no. 6, pp. 803–828, 2017.
  5. X. Huang and L. V. Lakshmanan, “Attribute-driven community search,” PVLDB, vol. 10, no. 9, pp. 949–960, 2017.
  6. R. Li, L. Qin, F. Ye, J. X. Yu, X. Xiao, N. Xiao, and Z. Zheng, “Skyline community search in multi-valued networks,” in SIGMOD, 2018, pp. 457–472.
  7. L. Chen, C. Liu, K. Liao, J. Li, and R. Zhou, “Contextual community search over large social networks,” in ICDE, 2019, pp. 88–99.
  8. J. Luo, X. Cao, X. Xie, Q. Qu, Z. Xu, and C. S. Jensen, “Efficient attribute-constrained co-located community search,” in ICDE, 2020, pp. 1201–1212.
  9. Q. Liu, Y. Zhu, M. Zhao, X. Huang, J. Xu, and Y. Gao, “Vac: vertex-centric attributed community search,” in ICDE, 2020, pp. 937–948.
  10. F. Guo, Y. Yuan, G. Wang, X. Zhao, and H. Sun, “Multi-attributed community search in road-social networks,” in 2021 IEEE 37th International Conference on Data Engineering (ICDE).   IEEE, 2021, pp. 109–120.
  11. M. Ley, “The dblp computer science bibliography: Evolution, research issues, perspectives,” in International symposium on string processing and information retrieval, 2002, pp. 1–10.
  12. J. Wang, A. P. De Vries, and M. J. Reinders, “Unifying user-based and item-based collaborative filtering approaches by similarity fusion,” in SIGIR, 2006, pp. 501–508.
  13. X. Chen, K. Wang, X. Lin, W. Zhang, L. Qin, and Y. Zhang, “Efficiently answering reachability and path queries on temporal bipartite graphs,” PVLDB, vol. 14, no. 10, p. 1845–1858, 2021.
  14. D. Ding, H. Li, Z. Huang, and N. Mamoulis, “Efficient fault-tolerant group recommendation using alpha-beta-core,” in CIKM, 2017, pp. 2047–2050.
  15. B. Liu, L. Yuan, X. Lin, L. Qin, W. Zhang, and J. Zhou, “Efficient (α,β𝛼𝛽\alpha,\betaitalic_α , italic_β)-core computation: An index-based approach,” in WWW, 2019, pp. 1130–1141.
  16. B. Liu, L. Yuan, X. Lin, L. Qin, and J. Zhou, “Efficient (α𝛼\alphaitalic_α, β𝛽\betaitalic_β)-core computation in bipartite graphs,” The VLDB Journal, vol. 29, no. 3, 2020.
  17. Z. Zou, “Bitruss decomposition of bipartite graphs,” in DASFAA, 2016, pp. 218–233.
  18. A. E. Sarıyüce and A. Pinar, “Peeling bipartite networks for dense subgraph discovery,” in WSDM, 2018, pp. 504–512.
  19. K. Wang, X. Lin, L. Qin, W. Zhang, and Y. Zhang, “Efficient bitruss decomposition for large-scale bipartite graphs,” in ICDE, 2020, pp. 661–672.
  20. Y. Zhang, C. A. Phillips, G. L. Rogers, E. J. Baker, E. J. Chesler, and M. A. Langston, “On finding bicliques in bipartite graphs: a novel algorithm and its application to the integration of diverse biological data types,” BMC bioinformatics, vol. 15, pp. 1–18, 2014.
  21. B. Lyu, L. Qin, X. Lin, Y. Zhang, Z. Qian, and J. Zhou, “Maximum biclique search at billion scale,” PVLDB, vol. 13, no. 9, p. 1359–1372, 2020.
  22. K. Wang, W. Zhang, X. Lin, L. Qin, and A. Zhou, “Efficient personalized maximum biclique search,” in ICDE, 2022, pp. 498–511.
  23. K. Wang, W. Zhang, X. Lin, Y. Zhang, L. Qin, and Y. Zhang, “Efficient and effective community search on large-scale bipartite graphs,” in 2021 IEEE 37th International Conference on Data Engineering (ICDE).   IEEE, 2021, pp. 85–96.
  24. Y. Zhang, K. Wang, W. Zhang, X. Lin, and Y. Zhang, “Pareto-optimal community search on large bipartite graphs,” pp. 2647–2656, 2021.
  25. K. Wang, W. Zhang, Y. Zhang, L. Qin, and Y. Zhang, “Discovering significant communities on bipartite graphs: An index-based approach,” TKDE, vol. 35, no. 3, pp. 2471–2485, 2023.
  26. S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives, “Dbpedia: A nucleus for a web of open data,” in international semantic web conference.   Springer, 2007, pp. 722–735.
  27. C. N. Ziegler, S. M. Mcnee, J. A. Konstan, and G. Lausen, “Improving recommendation lists through topic diversification,” in The Web Conference, 2005.
  28. A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts, “Learning word vectors for sentiment analysis,” in Annual meeting of the Association for Computational Linguistics, 2011.
  29. M. E. Newman, “The structure of scientific collaboration networks,” Proceedings of the national academy of sciences, vol. 98, no. 2, pp. 404–409, 2001.
  30. W. Khaouid, M. Barsky, V. Srinivasan, and A. Thomo, “K-core decomposition of large networks on a single pc,” PVLDB, vol. 9, no. 1, pp. 13–23, 2015.
  31. Q. Liu, X. Liao, X. Huang, J. Xu, and Y. Gao, “Distributed (α𝛼\alphaitalic_α, β𝛽\betaitalic_β)-core decomposition over bipartite graphs,” in 2023 IEEE 39th International Conference on Data Engineering (ICDE).   IEEE, 2023, pp. 909–921.
  32. W. Cui, Y. Xiao, H. Wang, J. Hong, and W. Wang, “Local search of communities in large graphs,” ACM, 2014.
  33. Y. Fang, X. Huang, L. Qin, Y. Zhang, W. Zhang, R. Cheng, and X. Lin, “A survey of community search over big graphs,” Springer Berlin Heidelberg, 2020.
  34. Y. Fang, Y. Yang, W. Zhang, X. Lin, and X. Cao, “Effective and efficient community search over large heterogeneous information networks,” Proceedings of the VLDB Endowment, vol. 13, no. 6, pp. 854–867, 2020.
  35. V. Batagelj and M. Zaversnik, “An o(m) algorithm for cores decomposition of networks,” CoRR, cs.DS/0310049, 2003.
  36. F. Bonchi, A. Khan, and L. Severini, “Distance-generalized core decomposition,” in proceedings of the 2019 international conference on management of data, 2019, pp. 1006–1023.
  37. J. Cohen, “Trusses: Cohesive subgraphs for social network analysis,” National security agency technical report, vol. 16, no. 3.1, pp. 1–29, 2008.
  38. Y. Zhang and J. X. Yu, “Unboundedness and efficiency of truss maintenance in evolving graphs,” in Proceedings of the 2019 International Conference on Management of Data, 2019, pp. 1024–1041.
  39. M. Sozio and A. Gionis, “The community-search problem and how to plan a successful cocktail party,” in SIGKDD, 2010, pp. 939–948.
  40. F. Bi, L. Chang, X. Lin, and W. Zhang, “An optimal and progressive approach to online search of top-k influential communities,” arXiv preprint arXiv:1711.05857, 2017.
  41. S. Chen, R. Wei, D. Popova, and A. Thomo, “Efficient computation of importance based communities in web-scale networks using a single machine,” in Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, 2016, pp. 1553–1562.
  42. R.-H. Li, J. Su, L. Qin, J. X. Yu, and Q. Dai, “Persistent community search in temporal networks,” in 2018 IEEE 34th International Conference on Data Engineering (ICDE).   IEEE, 2018, pp. 797–808.
  43. R. H. Li, L. Qin, F. Ye, J. X. Yu, and Z. Zheng, “Skyline community search in multi-valued networks,” in the 2018 International Conference, 2018.
  44. Y. Chen, Y. Fang, R. Cheng, Y. Li, X. Chen, and J. Zhang, “Exploring communities in large profiled graphs,” IEEE Transactions on Knowledge and Data Engineering, vol. 31, no. 8, pp. 1624–1629, 2018.
  45. X. Huang and L. V. S. Lakshmanan, “Attribute-driven community search,” in Very Large Data Bases, 2017.
  46. Z. Zheng, F. Ye, R. H. Li, G. Ling, and T. Jin, “Finding weighted k-truss communities in large networks,” Information ences, vol. 417, 2017.
  47. D. N. Yang, M. S. Chen, W. C. Lee, and Y. L. Chen, “On social-temporal group query with acquaintance constraint,” 2011.
  48. J. Li, X. Wang, K. Deng, X. Yang, and J. X. Yu, “Most influential community search over large social networks,” in 2017 IEEE 33rd International Conference on Data Engineering (ICDE), 2017.
  49. R. J. Mokken, “Cliques, clubs and clans,” Quality & Quantity, vol. 13, no. 2, pp. 161–173, 1979.
  50. S. B. Seidman and B. L. Foster, “A graph‐theoretic generalization of the clique concept*,” Journal of Mathematical Sociology, vol. 6, no. 1, pp. 139–154, 1978.
  51. Y. Fang, R. Cheng, S. Luo, and J. Hu, “Effective community search for large attributed graphs,” PVLDB, vol. 9, no. 12, pp. 1233–1244, 2016.
  52. Y. Fang, C. Cheng, S. Luo, J. Hu, and X. Li, “Effective community search over large spatial graphs,” Proceedings of the VLDB Endowment (PVLDB), 2017.
  53. Y. Fang, Z. Wang, R. Cheng, X. Li, S. Luo, J. Hu, and X. Chen, “On spatial-aware community search,” IEEE Transactions on Knowledge and Data Engineering, vol. 31, no. 4, pp. 783–798, 2018.
  54. R.-H. Li, L. Qin, J. X. Yu, and R. Mao, “Finding influential communities in massive networks,” The VLDB Journal, vol. 26, pp. 751–776, 2017.
  55. Y. Liu, F. Guo, B. Xu, P. Bao, H. Shen, and X. Cheng, “Significant-attributed community search in heterogeneous information networks,” arXiv preprint arXiv:2308.13244, 2023.
  56. Y. Zhang, K. Wang, W. Zhang, X. Lin, and Y. Zhang, “Pareto-optimal community search on large bipartite graphs,” in Proceedings of the 30th ACM International Conference on Information & Knowledge Management, 2021, pp. 2647–2656.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets