Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal Evasion from a Sensing-Limited Pursuer (2401.12848v1)

Published 23 Jan 2024 in cs.GT, cs.SY, and eess.SY

Abstract: This paper investigates a partial-information pursuit evasion game in which the Pursuer has a limited-range sensor to detect the Evader. Given a fixed final time, we derive the optimal evasion strategy for the Evader to maximize its distance from the pursuer at the end. Our analysis reveals that in certain parametric regimes, the optimal Evasion strategy involves a 'risky' maneuver, where the Evader's trajectory comes extremely close to the pursuer's sensing boundary before moving behind the Pursuer. Additionally, we explore a special case in which the Pursuer can choose the final time. In this scenario, we determine a (Nash) equilibrium pair for both the final time and the evasion strategy.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (13)
  1. M. Dorothy, D. Maity, D. Shishika, and A. Von Moll, “One Apollonius circle is enough for many pursuit-evasion games,” arXiv preprint arXiv:2111.09205, 2021.
  2. E. Garcia, D. W. Casbeer, and M. Pachter, “Optimal strategies for a class of multi-player reach-avoid differential games in 3D space,” IEEE Robotics and Automation Letters, vol. 5, no. 3, pp. 4257–4264, 2020.
  3. A. Pourghorban, M. Dorothy, D. Shishika, A. Von Moll, and D. Maity, “Target defense against sequentially arriving intruders,” in 61st Conference on Decision and Control, pp. 6594–6601, IEEE, 2022.
  4. J. W. Durham, A. Franchi, and F. Bullo, “Distributed pursuit-evasion with limited-visibility sensors via frontier-based exploration,” in International Conference on Robotics and Automation, pp. 3562–3568, IEEE, 2010.
  5. B. P. Gerkey, S. Thrun, and G. Gordon, “Visibility-based pursuit-evasion with limited field of view,” The International Journal of Robotics Research, vol. 25, no. 4, pp. 299–315, 2006.
  6. A. Bagchi and G. J. Olsder, “Linear-quadratic stochastic pursuit-evasion games,” Applied mathematics and optimization, vol. 7, no. 1, pp. 95–123, 1981.
  7. S. A. Aleem, C. Nowzari, and G. J. Pappas, “Self-triggered pursuit of a single evader,” in 54th Conference on Decision and Control, pp. 1433–1440, IEEE, 2015.
  8. D. Maity and J. S. Baras, “Strategies for two-player differential games with costly information,” in 13th International Workshop on Discrete Event Systems, pp. 211–216, IEEE, 2016.
  9. D. Maity and J. S. Baras, “Optimal strategies for stochastic linear quadratic differential games with costly information,” in 55th Conference on Decision and Control, pp. 276–282, IEEE, 2016.
  10. Y. Huang, J. Chen, and Q. Zhu, “Defending an asset with partial information and selected observations: A differential game framework,” in 60th Conference on Decision and Control, pp. 2366–2373, IEEE, 2021.
  11. D. Maity, “Efficient communication for pursuit-evasion games with asymmetric information,” in 62nd Conference on Decision and Control, IEEE, 2023 (to appear).
  12. New York, USA: Taylor and Francis Group, 1975.
  13. E. Zermelo, “Über das navigationsproblem bei ruhender oder veränderlicher windverteilung,” ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, vol. 11, no. 2, pp. 114–124, 1931.

Summary

We haven't generated a summary for this paper yet.