Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DeepRicci: Self-supervised Graph Structure-Feature Co-Refinement for Alleviating Over-squashing (2401.12780v1)

Published 23 Jan 2024 in cs.LG

Abstract: Graph Neural Networks (GNNs) have shown great power for learning and mining on graphs, and Graph Structure Learning (GSL) plays an important role in boosting GNNs with a refined graph. In the literature, most GSL solutions either primarily focus on structure refinement with task-specific supervision (i.e., node classification), or overlook the inherent weakness of GNNs themselves (e.g., over-squashing), resulting in suboptimal performance despite sophisticated designs. In light of these limitations, we propose to study self-supervised graph structure-feature co-refinement for effectively alleviating the issue of over-squashing in typical GNNs. In this paper, we take a fundamentally different perspective of the Ricci curvature in Riemannian geometry, in which we encounter the challenges of modeling, utilizing and computing Ricci curvature. To tackle these challenges, we present a self-supervised Riemannian model, DeepRicci. Specifically, we introduce a latent Riemannian space of heterogeneous curvatures to model various Ricci curvatures, and propose a gyrovector feature mapping to utilize Ricci curvature for typical GNNs. Thereafter, we refine node features by geometric contrastive learning among different geometric views, and simultaneously refine graph structure by backward Ricci flow based on a novel formulation of differentiable Ricci curvature. Finally, extensive experiments on public datasets show the superiority of DeepRicci, and the connection between backward Ricci flow and over-squashing. Codes of our work are given in https://github.com/RiemanGraph/.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (62)
  1. T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional networks,” in Proceedings of the 5th ICLR.   OpenReview.net, 2017.
  2. W. L. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning on large graphs,” in Advances in the 30th NeurIPS, 2017, pp. 1024–1034.
  3. S. Liu, B. Wang, X. Deng, and L. T. Yang, “Self-attentive graph convolution network with latent group mining and collaborative filtering for personalized recommendation,” IEEE Trans. Netw. Sci. Eng., vol. 9, no. 5, pp. 3212–3221, 2022.
  4. J. Chen, Z. Gong, W. Wang, C. Wang, Z. Xu, J. Lv, X. Li, K. Wu, and W. Liu, “Adversarial caching training: Unsupervised inductive network representation learning on large-scale graphs,” IEEE TNNLS, vol. 33, no. 12, pp. 7079–7090, 2022.
  5. K. Li, Y. Liu, X. Ao, J. Chi, J. Feng, H. Yang, and Q. He, “Reliable representations make A stronger defender: Unsupervised structure refinement for robust GNN,” in Proceedings of the 28th ACM SIGKDD.   ACM, 2022, pp. 925–935.
  6. J. Chen, Z. Gong, J. Mo, W. Wang, W. Wang, C. Wang, X. Dong, W. Liu, and K. Wu, “Self-training enhanced: Network embedding and overlapping community detection with adversarial learning,” IEEE TNNLS, vol. 33, no. 11, pp. 6737–6748, 2022.
  7. J. Topping, F. D. Giovanni, B. P. Chamberlain, X. Dong, and M. M. Bronstein, “Understanding over-squashing and bottlenecks on graphs via curvature,” in Proceedings of the 10th ICLR, 2022, pp. 1–30.
  8. D. Zou, H. Peng, X. Huang, R. Yang, J. Li, J. Wu, C. Liu, and P. S. Yu, “SE-GSL: A general and effective graph structure learning framework through structural entropy optimization,” in Proceedings of the ACM Web Conference 2023.   ACM, 2023, pp. 499–510.
  9. Q. Wu, W. Zhao, Z. Li, D. P. Wipf, and J. Yan, “Nodeformer: A scalable graph structure learning transformer for node classification,” in Advances in the 35th NeurIPS, 2022.
  10. Z. Song, Y. Zhang, and I. King, “Towards an optimal asymmetric graph structure for robust semi-supervised node classification,” in Proceedings of the 28th KDD.   ACM, 2022, pp. 1656–1665.
  11. N. Liu, X. Wang, L. Wu, Y. Chen, X. Guo, and C. Shi, “Compact graph structure learning via mutual information compression,” in Proceedings of the ACM Web Conference 2022.   ACM, 2022, pp. 1601–1610.
  12. Q. Sun, J. Li, H. Yuan, X. Fu, H. Peng, C. Ji, Q. Li, and P. S. Yu, “Position-aware structure learning for graph topology-imbalance by relieving under-reaching and over-squashing,” in Proceedings of the 31st ACM CIKM.   ACM, 2022, pp. 1848–1857.
  13. Y. Liu, Y. Zheng, D. Zhang, H. Chen, H. Peng, and S. Pan, “Towards unsupervised deep graph structure learning,” in Proceedings of the ACM Web Conference 2022.   ACM, 2022, pp. 1392–1403.
  14. J. Zhao, Q. Wen, M. Ju, C. Zhang, and Y. Ye, “Self-supervised graph structure refinement for graph neural networks,” in Proceedings of the 16th ACM WSDM.   ACM, 2023, pp. 159–167.
  15. P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio, “Graph attention networks,” in Proceedings of the 6th ICLR, 2018.
  16. Y. Lin, L. Lu, and S.-T. Yau, “Ricci curvature of graphs,” vol. 4, 2011, pp. 605–627.
  17. Y. Liu, C. Zhou, S. Pan, J. Wu, Z. Li, H. Chen, and P. Zhang, “Curvdrop: A ricci curvature based approach to prevent graph neural networks from over-smoothing and over-squashing,” in Proceedings of the ACM Web Conference 2023.   ACM, 2023, pp. 221–230.
  18. B. Xiong, S. Zhu, N. Potyka, S. Pan, C. Zhou, and S. Staab, “Pseudo-riemannian graph convolutional networks,” in Advances in the 35th NeurIPS, 2022.
  19. M. Law, “Ultrahyperbolic neural networks,” in Advances in the 34th NeurIPS, 2021, pp. 22 058–22 069.
  20. Y. Ollivier, “A survey of ricci curvature for metric spaces and markov chains,” Advanced Studies in Pure Mathematics, vol. 57, pp. 343–381, 2010.
  21. I. Chami, Z. Ying, C. Ré, and J. Leskovec, “Hyperbolic graph convolutional neural networks,” in Advances in the 32nd NeurIPS, 2019, pp. 4869–4880.
  22. Q. Liu, M. Nickel, and D. Kiela, “Hyperbolic graph neural networks,” in Advances in the 32nd NeurIPS, 2019, pp. 8228–8239.
  23. Y. Zhang, X. Wang, C. Shi, N. Liu, and G. Song, “Lorentzian graph convolutional networks,” in Proceedings of the Web Conference 2021.   ACM / IW3C2, 2021, pp. 1249–1261.
  24. J. Dai, Y. Wu, Z. Gao, and Y. Jia, “A hyperbolic-to-hyperbolic graph convolutional network,” in Proceedings of CVPR 2021.   CVF/ IEEE, 2021, pp. 154–163.
  25. W. Chen, X. Han, Y. Lin, H. Zhao, Z. Liu, P. Li, M. Sun, and J. Zhou, “Fully hyperbolic neural networks,” in Proceedings of the 60th ACL.   ACL, 2022, pp. 5672–5686.
  26. I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville, “Improved training of wasserstein gans,” in Advances in the 30th NeurIPS, 2017, pp. 5767–5777.
  27. G. Bachmann, G. Bécigneul, and O. Ganea, “Constant curvature graph convolutional networks,” in Proceedings of the 37th ICML, vol. 119.   PMLR, 2020, pp. 486–496.
  28. F. D. Giovanni, G. Luise, and M. M. Bronstein, “Heterogeneous manifolds for curvature-aware graph embedding,” in Proceedings of the 10th ICLR (GTRL Workshop), 2022.
  29. A. Gu, F. Sala, B. Gunel, and C. Ré, “Learning mixed-curvature representations in product spaces,” in Proceedings of the 7th ICLR, 2019.
  30. A. Rahimi and B. Recht, “Random features for large-scale kernel machines,” in Advances in 20th NeurIPS, 2007, pp. 1177–1184.
  31. T. Yu and C. D. Sa, “Random laplacian features for learning with hyperbolic space,” in Proceedings of the 11th ICLR, 2023, pp. 1–23.
  32. I. Ng, S. Zhu, Z. Fang, H. Li, Z. Chen, and J. Wang, “Masked gradient-based causal structure learning,” in Proceedings of SDM 2022.   SIAM, 2022, pp. 424–432.
  33. A. van den Oord, Y. Li, and O. Vinyals, “Representation learning with contrastive predictive coding,” CoRR, vol. abs/1807.03748, 2018.
  34. J. Cheeger, “A lower bound for the smallest eigenvalue of the laplacian,” Problems in Analysis, pp. 195–200, 2015.
  35. Q. Sun, J. Li, B. Yang, X. Fu, H. Peng, and P. S. Yu, “Self-organization preserved graph structure learning with principle of relevant information,” in Proceedings of the 37th AAAI.   AAAI Press, 2023.
  36. B. Fatemi, L. E. Asri, and S. M. Kazemi, “SLAPS: self-supervision improves structure learning for graph neural networks,” in Advances in the 34th NeurIPS, 2021, pp. 22 667–22 681.
  37. Y. Rong, W. Huang, T. Xu, and J. Huang, “Dropedge: Towards deep graph convolutional networks on node classification,” in Proceedings of the 8th ICLR, 2020.
  38. Y. Chen, L. Wu, and M. J. Zaki, “Iterative deep graph learning for graph neural networks: Better and robust node embeddings,” in Advances in 33rd NeurIPS, 2020.
  39. G. Bécigneul and O. Ganea, “Riemannian adaptive optimization methods,” in Proceedings of the 7th ICLR, 2019.
  40. C. Ni, Y. Lin, F. Luo, and J. Gao, “Community detection on networks with ricci flow,” Nature Scientific Reports, vol. 9, no. 9984, 2019.
  41. N. Park, R. A. Rossi, E. Koh, I. A. Burhanuddin, S. Kim, F. Du, N. K. Ahmed, and C. Faloutsos, “CGC: contrastive graph clustering for community detection and tracking,” in Proceedings of the Web Conference, 2022, pp. 1115–1126.
  42. B. Li, B. Jing, and H. Tong, “Graph communal contrastive learning,” in Proceedings of The ACM Web Conference.   ACM, 2022, pp. 1203–1213.
  43. A. Duval and F. D. Malliaros, “Higher-order clustering and pooling for graph neural networks,” in Proceedings of the 31st CIKM.   ACM, 2022, pp. 426–435.
  44. L. Gong, S. Zhou, W. Tu, and X. Liu, “Attributed graph clustering with dual redundancy reduction,” in Proceedings of the 31st IJCAI.   ijcai.org, 2022, pp. 3015–3021.
  45. Y. Wang, Z. Zhao, and Z. Feng, “Scalable graph topology learning via spectral densification,” in Proceedings of the 15th ACM WSDM.   ACM, 2022, pp. 1099–1108.
  46. M. Hu, H. Chang, B. Ma, and S. Shan, “Learning continuous graph structure with bilevel programming for graph neural networks,” in Proceedings of the 31st IJCAI.   ijcai.org, 2022, pp. 3057–3063.
  47. R. Wang, S. Mou, X. Wang, W. Xiao, Q. Ju, C. Shi, and X. Xie, “Graph structure estimation neural networks,” in Proceedings of the Web Conference 2021.   ACM / IW3C2, 2021, pp. 342–353.
  48. X. Liu, J. Cheng, Y. Song, and X. Jiang, “Boosting graph structure learning with dummy nodes,” in Proceedings of the 39th ICML, vol. 162.   PMLR, 2022, pp. 13 704–13 716.
  49. Y. Xie, Z. Xu, and S. Ji, “Self-supervised representation learning via latent graph prediction,” in Proceedings of the 39th ICML, vol. 162.   PMLR, 2022, pp. 24 460–24 477.
  50. C. Wei, J. Liang, D. Liu, and F. Wang, “Contrastive graph structure learning via information bottleneck for recommendation,” in Advances in the 35th NeurIPS, 2022, pp. 1–14.
  51. J. Zhao, X. Wang, C. Shi, B. Hu, G. Song, and Y. Ye, “Heterogeneous graph structure learning for graph neural networks,” in Proceedings of the 35th AAAI.   AAAI Press, 2021, pp. 4697–4705.
  52. D. Cai, M. Song, C. Sun, B. Zhang, S. Hong, and H. Li, “Hypergraph structure learning for hypergraph neural networks,” in Proceedings of the 31st IJCAI.   ijcai.org, 2022, pp. 1923–1929.
  53. M. Yang, M. Zhou, R. Ying, Y. Chen, and I. King, “Hyperbolic representation learning: Revisiting and advancing,” in Proceedings of the 40th ICML, vol. 202.   PMLR, 2023, pp. 39 639–39 659.
  54. F. López, B. Pozzetti, S. Trettel, M. Strube, and A. Wienhard, “Symmetric spaces for graph embeddings: A finsler-riemannian approach,” in Proceedings of the 38th ICML, vol. 139.   PMLR, 2021, pp. 7090–7101.
  55. S. Zhu, S. Pan, C. Zhou, J. Wu, Y. Cao, and B. Wang, “Graph geometry interaction learning,” in Advances in the 33rd NeurIPS, 2020.
  56. H. Yang, H. Chen, S. Pan, L. Li, P. S. Yu, and G. Xu, “Dual space graph contrastive learning,” in Proceedings of the ACM Web Conference 2022.   ACM, 2022, pp. 1238–1247.
  57. L. Sun, Z. Zhang, J. Zhang, F. Wang, H. Peng, S. Su, and P. S. Yu, “Hyperbolic variational graph neural network for modeling dynamic graphs,” in Proceedings of the 35th AAAI, 2021, pp. 4375–4383.
  58. L. Sun, J. Ye, H. Peng, F. Wang, and P. S. Yu, “Self-supervised continual graph learning in adaptive riemannian spaces,” in Proceedings of the 37th AAAI.   AAAI Press, 2023, pp. 4633–4642.
  59. L. Sun, J. Ye, H. Peng, and P. S. Yu, “A self-supervised riemannian GNN with time varying curvature for temporal graph learning,” in Proceedings of the 31st CIKM.   ACM, 2022, pp. 1827–1836.
  60. L. Sun, J. Ye, J. Zhang, Y. yang, M. Liu, F. Wang, and P. S. Yu, “Contrastive sequential interaction network learning on co-evolving riemannian spaces,” International Journal of Machine Learning and Cybernetics, 2023.
  61. L. Sun, Z. Zhang, J. Ye, H. Peng, J. Zhang, S. Su, and P. S. Yu, “A self-supervised mixed-curvature graph neural network,” in Proceedings of the 36th AAAI.   AAAI Press, 2022, pp. 4146–4155.
  62. L. Sun, F. Wang, J. Ye, H. Peng, and P. S. Yu, “CONGREGATE: contrastive graph clustering in curvature spaces,” in Proceedings of the 32nd IJCAI.   ijcai.org, 2023, pp. 2296–2305.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (7)
  1. Li Sun (135 papers)
  2. Zhenhao Huang (12 papers)
  3. Hua Wu (191 papers)
  4. Junda Ye (9 papers)
  5. Hao Peng (291 papers)
  6. Zhengtao Yu (31 papers)
  7. Philip S. Yu (592 papers)
Citations (6)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets