Localized Data-driven Consensus Control (2401.12707v1)
Abstract: This paper considers a localized data-driven consensus problem for leader-follower multi-agent systems with unknown discrete-time agent dynamics, where each follower computes its local control gain using only their locally collected state and input data. Both noiseless and noisy data-driven consensus protocols are presented, which can handle the challenge of the heterogeneity in control gains caused by the localized data sampling and achieve leader-follower consensus. The design of these data-driven consensus protocols involves low-dimensional linear matrix inequalities. In addition, the results are extended to the case where only the leader's data are collected and exploited. The effectiveness of the proposed methods is illustrated via simulation examples.
- T. Lei, Z. Hou, and Y. Ren, “Data-driven model free adaptive perimeter control for multi-region urban traffic networks with route choice,” IEEE Trans. Intell. Transp. Syst., vol. 21, no. 7, pp. 2894–2905, 2020.
- D. Li and B. De Schutter, “Distributed model-free adaptive predictive control for urban traffic networks,” IEEE Trans. Control Syst. Technol., vol. 30, no. 1, pp. 180–192, 2022.
- Y. Hui, R. Chi, B. Huang, and Z. Hou, “Data-driven adaptive iterative learning bipartite consensus for heterogeneous nonlinear cooperation–antagonism networks,” IEEE Trans. Neural Netw. Learn. Syst., vol. 34, no. 11, pp. 8262–8270, 2023.
- J. Zheng and Z. Hou, “Data-driven spatial adaptive terminal iterative learning predictive control for automatic stop control of subway train with actuator saturation,” IEEE Trans. Intell. Transp. Syst., vol. 24, no. 10, pp. 11 453–11 465, 2023.
- N. Wang, Y. Gao, and X. Zhang, “Data-driven performance-prescribed reinforcement learning control of an unmanned surface vehicle,” IEEE Trans. Neural Netw. Learn. Syst., vol. 32, no. 12, pp. 5456–5467, 2021.
- H. Dong and X. Zhao, “Data-driven wind farm control via multiplayer deep reinforcement learning,” IEEE Trans. Control Syst. Technol., vol. 31, no. 3, pp. 1468–1475, 2023.
- J. C. Willems, P. Rapisarda, I. Markovsky, and B. L. De Moor, “A note on persistency of excitation,” Syst. Control Lett., vol. 54, no. 4, pp. 325–329, 2005.
- H. J. van Waarde, C. De Persis, M. K. Camlibel, and P. Tesi, “Willems’ fundamental lemma for state-space systems and its extension to multiple datasets,” IEEE Control Syst. Lett., vol. 4, no. 3, pp. 602–607, 2020.
- G. Pan, R. Ou, and T. Faulwasser, “On a stochastic fundamental lemma and its use for data-driven optimal control,” IEEE Trans. Autom. Control, vol. 68, no. 10, pp. 5922–5937, 2023.
- C. De Persis and P. Tesi, “Formulas for data-driven control: Stabilization, optimality, and robustness,” IEEE Trans. Autom. Control, vol. 65, no. 3, pp. 909–924, 2020.
- H. J. van Waarde, J. Eising, H. L. Trentelman, and M. K. Camlibel, “Data informativity: A new perspective on data-driven analysis and control,” IEEE Trans. Autom. Control, vol. 65, no. 11, pp. 4753–4768, 2020.
- H. L. Trentelman, H. J. van Waarde, and M. K. Camlibel, “An informativity approach to the data-driven algebraic regulator problem,” IEEE Trans. Autom. Control, vol. 67, no. 11, pp. 6227–6233, 2022.
- N. Monshizadeh, “Amidst data-driven model reduction and control,” IEEE Control Syst. Lett., vol. 4, no. 4, pp. 833–838, 2020.
- L. Furieri, B. Guo, A. Martin, and G. Ferrari-Trecate, “Near-optimal design of safe output-feedback controllers from noisy data,” IEEE Trans. Autom. Control, vol. 68, no. 5, pp. 2699–2714, 2023.
- J. Berberich, A. Koch, C. W. Scherer, and F. Allgöwer, “Robust data-driven state-feedback design,” in Proc. Amer. Control Conf., 2020, pp. 1532–1538.
- S. Sinha, D. Muniraj, and M. Farhood, “LFT representation of a class of nonlinear systems: A data-driven approach,” in Proc. Eur. Control Conf., 2021, pp. 866–871.
- J. Berberich, C. W. Scherer, and F. Allgöwer, “Combining prior knowledge and data for robust controller design,” IEEE Trans. Autom. Control, vol. 68, no. 8, pp. 4618–4633, 2023.
- H. J. van Waarde, M. K. Camlibel, and M. Mesbahi, “From noisy data to feedback controllers: Nonconservative design via a matrix S-lemma,” IEEE Trans. Autom. Control, vol. 67, no. 1, pp. 162–175, 2022.
- A. Bisoffi, C. De Persis, and P. Tesi, “Trade-offs in learning controllers from noisy data,” Syst. Control Lett., vol. 154, p. 104985, 2021.
- H. J. van Waarde, M. K. Camlibel, P. Rapisarda, and H. L. Trentelman, “Data-driven dissipativity analysis: Application of the matrix S-lemma,” IEEE Control Syst. Mag., vol. 42, no. 3, pp. 140–149, 2022.
- M. Guo, C. De Persis, and P. Tesi, “Data-driven stabilization of nonlinear polynomial systems with noisy data,” IEEE Trans. Autom. Control, vol. 67, no. 8, pp. 4210–4217, 2022.
- J. Anderson, J. C. Doyle, S. H. Low, and N. Matni, “System level synthesis,” Annu. Rev. Control, vol. 47, pp. 364–393, 2019.
- A. Xue and N. Matni, “Data-driven system level synthesis,” in Proc. 3rd Conf. Learn. Dynamics Control, vol. 144, 2021, pp. 189–200.
- A. Bisoffi, C. De Persis, and P. Tesi, “Data-driven control via Petersen’s lemma,” Automatica, vol. 145, p. 110537, 2022.
- H. J. van Waarde and M. Kanat Camlibel, “A matrix Finsler’s lemma with applications to data-driven control,” in Proc. IEEE Conf. Decis. Control, 2021, pp. 5777–5782.
- C. De Persis and P. Tesi, “Low-complexity learning of Linear Quadratic Regulators from noisy data,” Automatica, vol. 128, p. 109548, 2021.
- F. Dörfler, P. Tesi, and C. De Persis, “On the certainty-equivalence approach to direct data-driven LQR design,” IEEE Trans. Autom. Control, vol. 68, no. 12, pp. 7989–7996, 2023.
- T. Dai and M. Sznaier, “Data-driven quadratic stabilization and LQR control of LTI systems,” Automatica, vol. 153, p. 111041, 2023.
- J. Jiao, H. J. van Waarde, H. L. Trentelman, M. K. Camlibel, and S. Hirche, “Data-driven output synchronization of heterogeneous leader-follower multi-agent systems,” in Proc. IEEE Conf. Decis. Control, 2021, pp. 466–471.
- A. Allibhoy and J. Cortés, “Data-based receding horizon control of linear network systems,” IEEE Control Syst. Lett., vol. 5, no. 4, pp. 1207–1212, 2021.
- G. Baggio, D. S. Bassett, and F. Pasqualetti, “Data-driven control of complex networks,” Nat. Commun., vol. 12, no. 1, p. 1429, 2021.
- G.-P. Liu, “Predictive control of networked nonlinear multiagent systems with communication constraints,” IEEE Trans. Syst. Man Cybern. Syst., vol. 50, no. 11, pp. 4447–4457, 2020.
- X. Zhang, G. Wang, and J. Sun, “Data-driven control of consensus tracking for discrete-time multi-agent systems,” J. Franklin Inst., vol. 360, no. 7, pp. 4661–4674, 2023.
- X. Wang, J. Sun, F. Deng, G. Wang, and J. Chen, “Event-triggered consensus control of heterogeneous multi-agent systems: model- and data-based approaches,” Sci. China Inf. Sci., vol. 66, p. 192201, 2023.
- R. Agaev and P. Chebotarev, “On the spectra of nonsymmetric Laplacian matrices,” Linear Algebra Appl., vol. 399, pp. 157–168, 2005.
- K. Hengster-Movric, K. You, F. L. Lewis, and L. Xie, “Synchronization of discrete-time multi-agent systems on graphs using Riccati design,” Automatica, vol. 49, no. 2, pp. 414–423, 2013.
- Z. Li, Z. Duan, G. Chen, and L. Huang, “Consensus of multiagent systems and synchronization of complex networks: A unified viewpoint,” IEEE Trans. Circuits Syst. I Regul. Pap., vol. 57, no. 1, pp. 213–224, 2010.
- V. Balakrishnan and L. Vandenberghe, “Connections between duality in control theory and convex optimization,” in Proc. Amer. Control Conf., vol. 6, 1995, pp. 4030–4034 vol.6.
- A. Ran and R. Vreugdenhil, “Existence and comparison theorems for algebraic Riccati equations for continuous- and discrete-time systems,” Linear Algebra Appl., vol. 99, pp. 63–83, 1988.
- L. Schenato, B. Sinopoli, M. Franceschetti, K. Poolla, and S. S. Sastry, “Foundations of control and estimation over lossy networks,” Proceedings of the IEEE, vol. 95, no. 1, pp. 163–187, 2007.
- B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. Jordan, and S. S. Sastry, “Kalman filtering with intermittent observations,” IEEE Trans. Autom. Control, vol. 49, no. 9, pp. 1453–1464, 2004.
- T. Liu and J. Huang, “Adaptive cooperative output regulation of discrete-time linear multi-agent systems by a distributed feedback control law,” IEEE Trans. Autom. Control, vol. 63, no. 12, pp. 4383–4390, 2018.
- Y. Li, X. Wang, J. Sun, G. Wang, and J. Chen, “Data-driven consensus control of fully distributed event-triggered multi-agent systems,” Sci. China Inf. Sci., vol. 66, p. 152202, 2023.
- I. Pólik and T. Terlaky, “A survey of the S-lemma,” SIAM Rev., vol. 49, no. 3, pp. 371–418, 2007.
- H. J. van Waarde and M. Mesbahi, “Data-driven parameterizations of suboptimal LQR and H2subscript𝐻2{H}_{2}italic_H start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT controllers,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 4234–4239, 2020.
- T. Dierks and S. Jagannathan, “Output feedback control of a quadrotor uav using neural networks,” IEEE Trans. Neural Netw., vol. 21, no. 1, pp. 50–66, 2010.
- L. Xie, M. Fu, and C. de Souza, “H∞subscript𝐻{H}_{\infty}italic_H start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT control and quadratic stabilization of systems with parameter uncertainty via output feedback,” IEEE Trans. Autom. Control, vol. 37, no. 8, pp. 1253–1256, 1992.
- Z. Li and J. Chen, “Robust consensus of linear feedback protocols over uncertain network graphs,” IEEE Trans. Autom. Control, vol. 62, no. 8, pp. 4251–4258, 2017.
- Z. Li, Z. Duan, L. Xie, and X. Liu, “Distributed robust control of linear multi-agent systems with parameter uncertainties,” Int. J. Control, vol. 85, no. 8, pp. 1039–1050, 2012.
- M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex programming, version 2.1,” http://cvxr.com/cvx, 2014.