Genetic Algorithm for Multi-Objective Optimization of Container Allocation in Cloud Architecture (2401.12698v1)
Abstract: The use of containers in cloud architectures has become widespread because of advantages such as limited overhead, easier and faster deployment and higher portability. Moreover, they are a suitable architectural solution for deployment of applications created using a microservices development pattern. Despite the large number of solutions and implementations, open issues have not been addressed in container automation and management. Container resource allocation influences system performance and resource consumption so it is a key factor for cloud providers. We propose a genetic algorithm approach, using the Non-dominated Sorting Genetic Algorithm-II (NSGA-II), to optimize container allocation and elasticity management due to the good results obtained with this algorithm in other resource management optimization problems in cloud architectures. The optimization has been focused on a tight use of the resources and a reduction of the network overhead and system failure rate. A model for cloud cluster, containers, microservices and four optimization objectives is presented. Experimental results have shown that our approach is a suitable solution to address the problem of container allocation and elasticity and it obtains better objectives values than the container management policies implemented in Kubernetes.
- Resource management for infrastructure as a service (iaas) in cloud computing: A survey. Journal of Network and Computer Applications 41, 424 – 440 (2014). DOI http://dx.doi.org/10.1016/j.jnca.2013.10.004. URL http://www.sciencedirect.com/science/article/pii/S1084804513002099
- Cluster Computing 19(3), 1163–1182 (2016)
- IEEE Software 33(3), 42–52 (2016). DOI 10.1109/MS.2016.64
- Future Generation Comp. Syst. 28(5), 755–768 (2012). DOI 10.1016/j.future.2011.04.017. URL http://dx.doi.org/10.1016/j.future.2011.04.017
- Journal of Grid Computing 13(1), 53–70 (2015). DOI 10.1007/s10723-014-9296-5. URL http://dx.doi.org/10.1007/s10723-014-9296-5
- Trans. Evol. Comp 6(2), 182–197 (2002). DOI 10.1109/4235.996017. URL http://dx.doi.org/10.1109/4235.996017
- Softw. Pract. Exper. 45(11), 1571–1590 (2015). DOI 10.1002/spe.2303. URL http://dx.doi.org/10.1002/spe.2303
- IEEE Cloud Computing 3(5), 81–88 (2016). DOI doi.ieeecomputersociety.org/10.1109/MCC.2016.112
- Fu, S.: Failure-aware resource management for high-availability computing clusters with distributed virtual machines. Journal of Parallel and Distributed Computing 70(4), 384 – 393 (2010). DOI http://dx.doi.org/10.1016/j.jpdc.2010.01.002. URL http://www.sciencedirect.com/science/article/pii/S0743731510000031
- IEEE Communications Letters PP(99), 1–1 (2016). DOI 10.1109/LCOMM.2016.2644658
- In: 2016 IEEE Region 10 Conference (TENCON), pp. 2428–2431 (2016). DOI 10.1109/TENCON.2016.7848467
- Reliability Engineering and System Safety 91(9), 992 – 1007 (2006). DOI http://dx.doi.org/10.1016/j.ress.2005.11.018. URL http://www.sciencedirect.com/science/article/pii/S0951832005002012. Special Issue - Genetic Algorithms and Reliability Special Issue
- Computational Optimization and Applications 58(3), 707–756 (2014). DOI 10.1007/s10589-014-9644-1. URL http://dx.doi.org/10.1007/s10589-014-9644-1
- Menasce, D.A.: Tpc-w: a benchmark for e-commerce. IEEE Internet Computing 6(3), 83–87 (2002). DOI 10.1109/MIC.2002.1003136
- Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge, MA, USA (1998)
- Journal of Grid Computing 13(3), 375–389 (2015). DOI 10.1007/s10723-014-9312-9. URL http://dx.doi.org/10.1007/s10723-014-9312-9
- Journal of Grid Computing 14(2), 265–282 (2016). DOI 10.1007/s10723-016-9366-y. URL http://dx.doi.org/10.1007/s10723-016-9366-y
- Knowl. Inf. Syst. 49(3), 1005–1069 (2016). DOI 10.1007/s10115-016-0922-3. URL http://dx.doi.org/10.1007/s10115-016-0922-3
- J. Grid Comput. 14(2), 217–264 (2016). DOI 10.1007/s10723-015-9359-2. URL http://dx.doi.org/10.1007/s10723-015-9359-2
- Vohra, D.: Scheduling pods on nodes. In: Kubernetes Management Design Patterns, pp. 199–236. Springer (2017)
- Weaveworks, ContainerSolutions: Socks shop - a microservices demo application (2016). URL https://microservices-demo.github.io/
- The Journal of Supercomputing 54(2), 252–269 (2010). DOI 10.1007/s11227-009-0318-1. URL http://dx.doi.org/10.1007/s11227-009-0318-1
- 2016 IEEE 9th International Conference on Cloud Computing 00, 252–259 (2016). DOI doi.ieeecomputersociety.org/10.1109/CLOUD.2016.0042
- In: Computational Science and Engineering (CSE), 2014 IEEE 17th International Conference on, pp. 257–264. IEEE (2014)
- ACM Comput. Surv. 47(4), 63:1–63:33 (2015). DOI 10.1145/2788397. URL http://doi.acm.org/10.1145/2788397
- Journal of Internet Services and Applications 1(1), 7–18 (2010). DOI 10.1007/s13174-010-0007-6. URL http://dx.doi.org/10.1007/s13174-010-0007-6