Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sequential discontinuity and first-order problems (2401.12641v1)

Published 23 Jan 2024 in math.LO, cs.LO, and math.GN

Abstract: We explore the low levels of the structure of the continuous Weihrauch degrees of first-order problems. In particular, we show that there exists a minimal discontinuous first-order degree, namely that of $\accn$, without any determinacy assumptions. The same degree is also revealed as the least sequentially discontinuous one, i.e. the least degree with a representative whose restriction to some sequence converging to a limit point is still discontinuous. The study of games related to continuous Weihrauch reducibility constitutes an important ingredient in the proof of the main theorem. We present some initial additional results about the degrees of first-order problems that can be obtained using this approach.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. Vasco Brattka (1999): Recursive and computable operations over topological structures. Ph.D. thesis, FernUniversität Hagen. Informatik Berichte 255.
  2. Vasco Brattka (2020): The Discontinuity Problem. CoRR abs/2012.02143. Available at https://arxiv.org/abs/2012.02143.
  3. Vasco Brattka, Matthew de Brecht & Arno Pauly (2012): Closed choice and a Uniform Low Basis Theorem. Annals of Pure and Applied Logic 163(8), pp. 986–1008. Available at https://www.sciencedirect.com/science/article/pii/S016800721100193X. Continuity, Computability, Constructivity: From Logic to Algorithms.
  4. Vasco Brattka & Guido Gherardi (2020): Weihrauch Goes Brouwerian. Journal of Symbolic Logic 85(4), pp. 1614–1653. Available at https://doi.org/10.1017/jsl.2020.76.
  5. Vasco Brattka & Guido Gherardi (2021): Completion of choice. Ann. Pure Appl. Log. 172(3), p. 102914. Available at https://doi.org/10.1016/j.apal.2020.102914.
  6. Springer, Cham. Available at https://doi.org/10.1007/978-3-030-59234-9_11. ArXiv 1707.03202.
  7. Vasco Brattka, Matthew Hendtlass & Alexander Kreuzer (2017): On the uniform computational content of computability theory. Theory of Computing Systems 61(4).
  8. Vasco Brattka & Arno Pauly (2018): On the algebraic structure of Weihrauch degrees. Logical Methods in Computer Science 14(4). Available at http://arxiv.org/abs/1604.08348.
  9. Matthew de Brecht, Arno Pauly & Matthias Schröder (2020): Overt choice. Computability 9(3-4), pp. 169–191.
  10. Vittorio Cipriani & Arno Pauly (2023). Embeddability of graphs and Weihrauch degrees. arXiv 2305.00935.
  11. Damir Dzhafarov (2017). Joins in the strong Weihrauch degrees. arXiv 1704.01494. Available at https://arxiv.org/abs/1704.01494.
  12. Damir D. Dzhafarov, Reed Solomon & Manlio Valenti (2023). The Tree Pigeonhole Principle in the Weihrauch degrees. arXiv 2312.10535. Available at https://arxiv.org/abs/2312.10535.
  13. Damir D. Dzhafarov, Reed Solomon & Keita Yokoyama (2023). On the first-order parts of problems in the Weihrauch degrees. arXiv:2301.12733.
  14. Jun Le Goh, Arno Pauly & Manlio Valenti (2021): Finding descending sequences through ill-founded linear orders. Journal of Symbolic Logic 86(2).
  15. Vassilios Gregoriades (2016): Classes of Polish spaces under effective Borel isomorphism. Memoirs of the American Mathematical Society .
  16. Kojiro Higuchi & Arno Pauly (2013): The degree-structure of Weihrauch-reducibility. Logical Methods in Computer Science 9(2).
  17. Hugo Nobrega & Arno Pauly (2019): Game characterizations and lower cones in the Weihrauch degrees. Logical Methods in Computer Science 15(3), pp. 11.1–11.29.
  18. Arno Pauly (2016): On the topological aspects of the theory of represented spaces. Computability 5(2), pp. 159–180. Available at http://arxiv.org/abs/1204.3763.
  19. Yann Pequignot (2015): A Wadge hierarchy for second countable spaces. Archive for Mathematical Logic , pp. 1–25Available at http://dx.doi.org/10.1007/s00153-015-0434-y.
  20. Matthias Schröder (2002): Admissible Representations for Continuous Computations. Ph.D. thesis, FernUniversität Hagen.
  21. Matthias Schröder (2002): Extended admissibility. Theoretical Computer Science 284(2), pp. 519–538.
  22. Giovanni Solda & Manlio Valenti (2023): Algebraic properties of the first-order part of a problem. Ann. Pure Appl. Log. 174(7), p. 103270. Available at https://doi.org/10.1016/j.apal.2023.103270.
  23. Patrick Uftring (202X): Weihrauch degrees without roots. Computability Available at https://arxiv.org/abs/2308.01422.
  24. R.A. van Wesep (1978): Wadge degrees and descriptive set theory. In: A.S. Kechris & Y.N. Moschovakis, editors: Cabal Seminar 76-77, Lecture Notes in Mathematics 689, Springer.
Citations (2)

Summary

We haven't generated a summary for this paper yet.