Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Pigeonhole Principles and Ramsey in TFNP (2401.12604v2)

Published 23 Jan 2024 in cs.CC

Abstract: We show that the TFNP problem RAMSEY is not black-box reducible to PIGEON, refuting a conjecture of Goldberg and Papadimitriou in the black-box setting. We prove this by giving reductions to RAMSEY from a new family of TFNP problems that correspond to generalized versions of the pigeonhole principle, and then proving that these generalized versions cannot be reduced to PIGEON. Formally, we define t-PPP as the class of total NP-search problems reducible to finding a t-collision in a mapping from (t-1)N+1 pigeons to N holes. These classes are closely related to multi-collision resistant hash functions in cryptography. We show that the generalized pigeonhole classes form a hierarchy as t increases, and also give a natural condition on the parameters t1, t2 that captures exactly when t1-PPP and t2-PPP collapse in the black-box setting. Finally, we prove other inclusion and separation results between these generalized PIGEON problems and other previously studied TFNP subclasses, such as PLS, PPA and PLC. Our separation results rely on new lower bounds in propositional proof complexity based on pseudoexpectation operators, which may be of independent interest.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (51)
  1. The need for structure in quantum speedups. Theory Comput., 10:133–166, 2014. doi:10.4086/toc.2014.v010a006.
  2. Quantum lower bounds for the collision and the element distinctness problems. J. ACM, 51(4):595–605, 2004. doi:10.1145/1008731.1008735.
  3. Improved witnessing and local improvement principles for second-order bounded arithmetic. ACM Trans. Comput. Log., 15(1):Art. 2, 35, 2014. doi:10.1145/2559950.
  4. Strengths and weaknesses of quantum computing. SIAM J. Comput., 26(5):1510–1523, 1997. doi:10.1137/S0097539796300933.
  5. The relative complexity of NP search problems. volume 57, pages 3–19. 1998. 27th Annual ACM Symposium on the Theory of Computing (STOC’95) (Las Vegas, NV). doi:10.1006/jcss.1998.1575.
  6. Multi-collision resistant hash functions and their applications. In Jesper Buus Nielsen and Vincent Rijmen, editors, Advances in Cryptology - EUROCRYPT 2018 - 37th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part II, volume 10821 of Lecture Notes in Computer Science, pages 133–161. Springer, 2018. doi:10.1007/978-3-319-78375-8_5.
  7. PPP-completeness and extremal combinatorics. In 14th Innovations in Theoretical Computer Science Conference, volume 251 of LIPIcs. Leibniz Int. Proc. Inform., pages Art. No. 22, 20. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2023. doi:10.4230/lipics.itcs.2023.22.
  8. TFNP characterizations of proof systems and monotone circuits. In 14th Innovations in Theoretical Computer Science Conference, volume 251 of LIPIcs. Leibniz Int. Proc. Inform., pages Art. No. 30, 40. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2023. doi:10.4230/lipics.itcs.2023.30.
  9. Propositional proofs and reductions between NP search problems. Ann. Pure Appl. Logic, 163(9):1163–1182, 2012. doi:10.1016/j.apal.2012.01.015.
  10. An application of Boolean complexity to separation problems in bounded arithmetic. Proc. London Math. Soc. (3), 69(1):1–21, 1994. doi:10.1112/plms/s3-69.1.1.
  11. Multi-collision resistance: a paradigm for keyless hash functions. In STOC’18—Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, pages 671–684. ACM, New York, 2018. doi:10.1145/3188745.3188870.
  12. Relativized NP search problems and propositional proof systems. In 19th Annual IEEE Conference on Computational Complexity (CCC 2004), 21-24 June 2004, Amherst, MA, USA, pages 54–67. IEEE Computer Society, 2004. doi:10.1109/CCC.2004.1313795.
  13. Online Ramsey numbers and the subgraph query problem. In Building bridges II—mathematics of László Lovász, volume 28 of Bolyai Soc. Math. Stud., pages 159–194. Springer, Berlin, [2019] ©2019.
  14. Unbiased bits from sources of weak randomness and probabilistic communication complexity. volume 17, pages 230–261. 1988. Special issue on cryptography. doi:10.1137/0217015.
  15. An exponential improvement for diagonal ramsey, 2023. arXiv:2303.09521.
  16. Gil Cohen. Two-source dispersers for polylogarithmic entropy and improved Ramsey graphs. In STOC’16—Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, pages 278–284. ACM, New York, 2016. doi:10.1145/2897518.2897530.
  17. Explicit two-source extractors and resilient functions. Ann. of Math. (2), 189(3):653–705, 2019. doi:10.4007/annals.2019.189.3.1.
  18. Paul Erdös. Some remarks on the theory of graphs. Bulletin of the American Mathematical Society, 53:292–294, 1947. URL: https://api.semanticscholar.org/CorpusID:14215209.
  19. Black-box PPP is not Turing-closed. In submission, 2023.
  20. Semialgebraic proofs and efficient algorithm design. Found. Trends Theor. Comput. Sci., 14(1-2):front matter, 1–221, 2019. doi:10.1561/0400000086.
  21. Separations in Proof Complexity and TFNP. In 63rd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2022, Denver, CO, USA, October 31 - November 3, 2022, pages 1150–1161. IEEE, 2022. doi:10.1109/FOCS54457.2022.00111.
  22. Adventures in monotone complexity and TFNP. In 10th Innovations in Theoretical Computer Science, volume 124 of LIPIcs. Leibniz Int. Proc. Inform., pages Art. No. 38, 19. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2019.
  23. Limitations of the sherali-adams lift and project system: Compromising local and global arguments. Technical Report 587, University of Toronto, 2008.
  24. TFNP: an update. In Dimitris Fotakis, Aris Pagourtzis, and Vangelis Th. Paschos, editors, Algorithms and Complexity - 10th International Conference, CIAC 2017, volume 10236 of Lecture Notes in Computer Science, pages 3–9, 2017. doi:10.1007/978-3-319-57586-5_1.
  25. Essential Coding Theory (Draft). 2023. URL: https://cse.buffalo.edu/faculty/atri/courses/coding-theory/book/.
  26. Finding collisions in interactive protocols - tight lower bounds on the round and communication complexities of statistically hiding commitments. SIAM J. Comput., 44(1):193–242, 2015. doi:10.1137/130938438.
  27. TFNP intersections through the lens of feasible disjunction. To appear at ITCS 2024, 2024.
  28. Beach House. PPP. Aug 2015. URL: https://en.wikipedia.org/wiki/PPP_(song).
  29. Emil Jeřábek. Approximate counting by hashing in bounded arithmetic. J. Symbolic Logic, 74(3):829–860, 2009. doi:10.2178/jsl/1245158087.
  30. Emil Jeřábek. Integer factoring and modular square roots. J. Comput. System Sci., 82(2):380–394, 2016. doi:10.1016/j.jcss.2015.08.001.
  31. How easy is local search? volume 37, pages 79–100. 1988. 26th IEEE Conference on Foundations of Computer Science (Portland, OR, 1985). doi:10.1016/0022-0000(88)90046-3.
  32. Collision resistant hashing for paranoids: dealing with multiple collisions. In Advances in cryptology—EUROCRYPT 2018. Part II, volume 10821 of Lecture Notes in Comput. Sci., pages 162–194. Springer, Cham, 2018. URL: https://doi.org/10.1007/978-3-319-78375-8_6, doi:10.1007/978-3-319-78375-8_6.
  33. White-box vs. black-box complexity of search problems: Ramsey and graph property testing. J. ACM, 66(5), jul 2019. doi:10.1145/3341106.
  34. The provably total NP search problems of weak second order bounded arithmetic. Ann. Pure Appl. Logic, 162(6):419–446, 2011. doi:10.1016/j.apal.2010.12.002.
  35. Approximate counting and NP search problems. J. Math. Log., 22(3):Paper No. 2250012, 31, 2022. doi:10.1142/S021906132250012X.
  36. Xin Li. Two source extractors for asymptotically optimal entropy, and (many) more. CoRR, abs/2303.06802, 2023. arXiv:2303.06802, doi:10.48550/arXiv.2303.06802.
  37. Jiawei Li. Total search problems with abundant solutions. To appear at ITCS 2024, 2024.
  38. On finding quantum multi-collisions. In Advances in cryptology—EUROCRYPT 2019. Part III, volume 11478 of Lecture Notes in Comput. Sci., pages 189–218. Springer, Cham, 2019. doi:10.1007/978-3-030-17659-4.
  39. Tsuyoshi Morioka. Classification of search problems and their definability in bounded arithmetic. Electron. Colloquium Comput. Complex., TR01-082, 2001. URL: https://eccc.weizmann.ac.il/eccc-reports/2001/TR01-082/index.html, arXiv:TR01-082.
  40. A new proof of the weak pigeonhole principle. In Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, pages 368–377. ACM, New York, 2000. doi:10.1145/335305.335348.
  41. Moritz Müller. Typical forcings, NP search problems and an extension of a theorem of riis. Ann. Pure Appl. Log., 172(4):102930, 2021. URL: https://doi.org/10.1016/j.apal.2020.102930, doi:10.1016/J.APAL.2020.102930.
  42. Christos H. Papadimitriou. On the complexity of the parity argument and other inefficient proofs of existence. volume 48, pages 498–532. 1994. 31st Annual Symposium on Foundations of Computer Science (FOCS) (St. Louis, MO, 1990). doi:10.1016/S0022-0000(05)80063-7.
  43. Extremal combinatorics, Iterated Pigeonhole Arguments and Generalizations of PPP. In Yael Tauman Kalai, editor, 14th Innovations in Theoretical Computer Science Conference, ITCS 2023, volume 251 of LIPIcs, pages 88:1–88:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPIcs.ITCS.2023.88.
  44. F. P. Ramsey. On a Problem of Formal Logic. Proc. London Math. Soc. (2), 30(4):264–286, 1929. doi:10.1112/plms/s2-30.1.264.
  45. Collision-resistance from multi-collision-resistance. In Advances in cryptology—CRYPTO 2022. Part III, volume 13509 of Lecture Notes in Comput. Sci., pages 503–529. Springer, Cham, [2022] ©2022. URL: https://doi.org/10.1007/978-3-031-15982-4_17, doi:10.1007/978-3-031-15982-4_17.
  46. The provably total search problems of bounded arithmetic. Proc. Lond. Math. Soc. (3), 103(1):106–138, 2011. doi:10.1112/plms/pdq044.
  47. Neil Thapen. A model-theoretic characterization of the weak pigeonhole principle. Ann. Pure Appl. Logic, 118(1-2):175–195, 2002. doi:10.1016/S0168-0072(02)00038-6.
  48. Salil P. Vadhan. Pseudorandomness. Found. Trends Theor. Comput. Sci., 7(1-3):1–336, 2012. doi:10.1561/0400000010.
  49. Henry Yuen. A quantum lower bound for distinguishing random functions from random permutations. Quantum Inf. Comput., 14(13-14):1089–1097, 2014.
  50. Verifiable quantum advantage without structure. In 63rd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2022, Denver, CO, USA, October 31 - November 3, 2022, pages 69–74. IEEE, 2022. doi:10.1109/FOCS54457.2022.00014.
  51. Mark Zhandry. A note on the quantum collision and set equality problems. Quantum Inf. Comput., 15(7-8):557–567, 2015.
Citations (5)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com
Youtube Logo Streamline Icon: https://streamlinehq.com