Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximate solution of stochastic infinite horizon optimal control problems for constrained linear uncertain systems (2401.12556v1)

Published 23 Jan 2024 in math.OC, cs.SY, and eess.SY

Abstract: We propose a Model Predictive Control (MPC) with a single-step prediction horizon to solve infinite horizon optimal control problems with the expected sum of convex stage costs for constrained linear uncertain systems. The proposed method relies on two techniques. First, we estimate the expected values of the convex costs using a computationally tractable approximation, achieved by sampling across the space of disturbances. Second, we implement a data-driven approach to approximate the optimal value function and its corresponding domain, through systematic exploration of the system's state space. These estimates are subsequently used as the terminal cost and terminal set within the proposed MPC. We prove recursive feasibility, robust constraint satisfaction, and convergence in probability to the target set. Furthermore, we prove that the estimated value function converges to the optimal value function in a local region. The effectiveness of the proposed MPC is illustrated with detailed numerical simulations and comparisons with a value iteration method and a Learning MPC that minimizes a certainty equivalent cost.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com