Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Self-Supervised Vision Transformers Are Efficient Segmentation Learners for Imperfect Labels (2401.12535v1)

Published 23 Jan 2024 in cs.CV

Abstract: This study demonstrates a cost-effective approach to semantic segmentation using self-supervised vision transformers (SSVT). By freezing the SSVT backbone and training a lightweight segmentation head, our approach effectively utilizes imperfect labels, thereby improving robustness to label imperfections. Empirical experiments show significant performance improvements over existing methods for various annotation types, including scribble, point-level, and image-level labels. The research highlights the effectiveness of self-supervised vision transformers in dealing with imperfect labels, providing a practical and efficient solution for semantic segmentation while reducing annotation costs. Through extensive experiments, we confirm that our method outperforms baseline models for all types of imperfect labels. Especially under the zero-shot vision-language-model-based label, our model exhibits 11.5\%p performance gain compared to the baseline.

Summary

We haven't generated a summary for this paper yet.