Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

GIT quotient of Schubert varieties modulo one dimensional torus (2401.12527v1)

Published 23 Jan 2024 in math.AG

Abstract: Let $G$ be a simple algebraic group of adjoint type of rank $n$ over $\mathbb{C}$. Let $T$ be a maximal torus of $G$, and $B$ be a Borel subgroup of $G$ containing $T$. Let $W=N_{G}(T)/T$ be the Weyl group of $G$. Let $S={\alpha_{1},\ldots,\alpha_{n}}$ be the set of simple roots of $G$ relative to $(B,T)$. Let $\lambda_{s}$ be the one parameter subgroup of $T$ dual to $\alpha_{s}$. In this paper, we give a criterion for Schubert varieties admitting semistable points for the $\lambda_{s}$-linearized line bundles $\mathcal{L}(\chi)$ associated to every dominant character $\chi$ of $T$. If $\omega_{r}$ is a minuscule fundamental weight and $m\omega_{r}\in X(T)$, then we prove that there is a unique minimal dimensional Schubert variety $X(w_{s,r})$ in $G/P_{S\setminus{\alpha_{r}}}$ such that $X(w_{s,r}){ss}{\lambda{s}}(\mathcal{L}(m\omega_{r}))\neq \phi$. Further, we prove that if $G=PSL(n,\mathbb{C})$, and $n\nmid rs$, $m=\frac{n}{(rs,n)}$, and $p=\lfloor\frac{rs}{n}\rfloor$ then the GIT quotient of the minimal dimensional Schubert variety $X(w_{s,r})$ is isomorphic to the projective space $\mathbb{P}(M(s-p, r-p))$, where $M(s-p, r-p)$ is the $(s-p)\times (r-p)$-matrices with complex numbers as entries.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (14)
  1. V. V. Deodhar. On some geometric aspects of Bruhat orderings. I. A finer decomposition of Bruhat cells. Inventiones mathematicae 79.3 (1985): 499-511.
  2. J. M. Dr´ezet. Luna’s slice theorem and applications. (2004): 39-90.
  3. J. C. Hausmann, and A.Knutson. Polygon spaces and Grassmannians. L’Enseignement Mathématique 43 (1997).
  4. S. S. Kannan. Torus quotients of homogeneous spaces. Proceedings Mathematical Sciences 108 (1998): 1-12.
  5. S. S. Kannan. Torus quotients of homogeneous spaces—II. Proceedings of the Indian Academy of Sciences-Mathematical Sciences. Vol. 109. Springer India, 1999.
  6. S. S. Kannan and S. K. Pattanayak. Torus quotients of homogeneous spaces—minimal dimensional Schubert varieties admitting semi-stable points. Proceedings-Mathematical Sciences 119 (2009): 469-485.
  7. S. S. Kannan, and P. Sardar. Torus quotients of homogeneous spaces of the general linear group and the standard representation of certain symmetric groups. Proceedings-Mathematical Sciences 119 (2009): 81-100.
  8. V. Lakshmibai and J. Weyman. Multiplicities of points on a Schubert variety in a minuscule GP. Advances in Mathematics 84.2 (1990): 179-208.
  9. C. S. Seshadri, Quotient spaces modulo reductive algebraic groups. Annals of Mathematics 95.3 (1972): 511-556.
  10. A. N. Skorobogatov. On a theorem of Enriques-Swinnerton-Dyer. Annales de la Faculté des sciences de Toulouse: Mathématiques. Vol. 2. No. 3. 1993.
  11. T. A. Springer. Linear algebraic groups. Vol. 9. Boston: Birkhäuser, 1998.
  12. J. R. Stembridge, Minuscule elements of Weyl groups. Journal of Algebra 235.2 (2001): 722-743. bornik: Mathematics 205 (2014): 1223 - 1263.
  13. J. R. Stembridge, The partial order of dominant weights. Advances in Mathematics 136.2 (1998): 340-364.
  14. F. Stumbo, Minimal length coset representatives for quotients of parabolic subgroups in Coxeter groups. Bollettino Della Unione Matematica Italiana (2000): 699-715.

Summary

We haven't generated a summary for this paper yet.