2000 character limit reached
A parametrix method for elliptic surface PDEs (2401.12501v1)
Published 23 Jan 2024 in math.NA and cs.NA
Abstract: Elliptic problems along smooth surfaces embedded in three dimensions occur in thin-membrane mechanics, electromagnetics (harmonic vector fields), and computational geometry. In this work, we present a parametrix-based integral equation method applicable to several forms of variable coefficient surface elliptic problems. Via the use of an approximate Green's function, the surface PDEs are transformed into well-conditioned integral equations. We demonstrate high-order numerical examples of this method applied to problems on general surfaces using a variant of the fast multipole method based on smooth interpolation properties of the kernel. Lastly, we discuss extensions of the method to surfaces with boundaries.
- FMM-accelerated solvers for the Laplace-Beltrami problem on complex surfaces in three dimensions. J. Sci. Comput., 97:25, 2023.
- The method of fundamental solutions applied to boundary value problems on the surface of a sphere. Comp. Math. Appl., 75(7):2365–2373, 2018.
- Anisotropic Laplace-Beltrami Operators for Shape Analysis. In L. Agapito, M. M. Bronstein, and C. Rother, editors, Computer Vision - ECCV 2014 Workshops, pages 299–312, Cham, 2015. Springer International Publishing.
- On the Laplace-Beltrami Operator and Brain Surface Flattening. IEEE Trans. Med. Imag., 18(8):700–711, 1999.
- A finite element method for surface diffusion: The parametric case. J. Comput. Phys., 203(1):321–343, 2005.
- The hitchhiker’s guide to the virtual element method. Math. Models and Meth. Appl. Sci., 24(08):1541–1573, 2014.
- Variational problems and partial differential equations on implicit surfaces. J. Comput. Phys., 174(2):759–780, 2001.
- An integral equation method for the numerical solution of a Dirichlet problem for second-order elliptic equations with variable coefficients. J. Eng. Math., 112(1):63–73, 2018.
- Finite element methods for the Laplace–Beltrami operator, volume 21. Elsevier B.V., 1 edition, 2020.
- A Priori Error Estimates for Finite Element Approximations to Eigenvalues and Eigenfunctions of the Laplace–Beltrami Operator. SIAM J. Num. Anal., 56(5):2963–2988, 2018.
- J. Bremer and Z. Gimbutas. A Nyström method for weakly singular integral operators on surfaces. J. Comput. Phys., 231:4885–4903, 2012.
- H. Brezis. Functional analysis, Sobolev spaces and partial differential equations. Universitext. Springer, New York
- A cut discontinuous Galerkin method for the Laplace-Beltrami operator. IMA J. Num. Anal., 37(1):138–169, 2017.
- A stable cut finite element method for partial differential equations on surfaces: The Helmholtz–Beltrami operator. Comput. Meth. Appl. Mech. Eng., 362:112803, 2020.
- Y. Chen and C. B. Macdonald. The closest point method and multigrid solvers for elliptic equations on surfaces. SIAM J. Sci. Comput., 37(1):A134–A155, 2015.
- Analysis of direct boundary-domain integral equations for a mixed BVP with variable coefficient, I: Equivalence and invertibility. J. Integral Equ. Appl., 21(4):499–543, 2009.
- Analysis of direct boundary-domain integral equations for a mixed BVP with variable coefficient, II: Solution regularity and asymptotics. J. Integral Equ. Appl., 22(1):19–37, 2010.
- Localized Boundary-Domain Singular Integral Equations Based on Harmonic Parametrix for Divergence-Form Elliptic PDEs with Variable Matrix Coefficients. Integral Equ. Oper. Theory, 76(4):509–547, 2013.
- Singular localised boundary-domain integral equations of acoustic scattering by inhomogeneous anisotropic obstacle. Math. Meth. Appl. Sci., 41(17):8033–8058, 2018.
- M. Chung and J. Taylor. Diffusion smoothing on brain surface via finite element method. In 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821), pages 432–435 Vol. 1, 2004.
- A. Demlow and G. Dziuk. An adaptive finite element method for the Laplace–Beltrami operator on implicitly defined surfaces. SIAM J. Num. Anal., 45(1):421–442, 2007.
- G. Dziuk. Finite elements for the Beltrami operator on arbitrary surfaces. In Partial differential equations and calculus of variations, pages 142–155. Springer, Berlin, Heidelberg, 1988.
- G. Dziuk and C. M. Elliott. Finite element methods for surface PDEs. Acta Numer., 22:289–396, 2013.
- C. L. Epstein and L. Greengard. Debye sources and the numerical solution of the time harmonic Maxwell equations. Comm. Pure Appl. Math., dec 2009.
- Debye Sources and the Numerical Solution of the Time Harmonic Maxwell Equations II. Comm. Pure Appl. Math., 66(5):753–789, 2013.
- A high-order wideband direct solver for electromagnetic scattering from bodies of revolution. J. Comput. Phys., 387:205–229, 2019.
- The surface diffusion flow for immersed hypersurfaces. SIAM J. Math. Anal., 29(6):1419–1433, 1998.
- L. C. Evans. Partial Differential Equations. American Mathematical Society, Providence, Rhode Island, 2nd edition, 2010.
- G. B. Folland. Introduction to Partial Differential Equations. Princeton University Press, Princeton, New Jersey, 2nd edition, 1995.
- D. Fortunato. A high-order fast direct solver for surface PDEs. SIAM J. Sci. Comput., 2023.
- C. Fresneda-Portillo and Z. Woldemicheal. A new family of boundary-domain integral equations for the Dirichlet problem of the diffusion equation in inhomogeneous media with H-1(ΩΩ\Omegaroman_Ω) source term on Lipschitz domains. Math. Meth. Appl. Sci., 44(12):9817–9830, 2021.
- C. Fresneda-Portillo and Z. W. Woldemicheal. On the existence of solution of the boundary-domain integral equation system derived from the 2D Dirichlet problem for the diffusion equation with variable coefficient using a novel parametrix. Complex Var. Elliptic Equ., 65(12):2056–2070, 2020.
- M. Frittelli and I. Sgura. Virtual element method for the Laplace-Beltrami equation on surfaces. ESAIM: Math. Modell. Num. Anal., 52(3):965–993, 2018.
- P. Garabedian. Partial Differential Equations. Chelsea Publish Company, New York, NY, 2nd edition, 1986.
- Fast multipole methods for the evaluation of layer potentials with locally-corrected quadratures. J. Comput. Phys.: X, 10:100092, 2021.
- L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. J. Comput. Phys., 73(2):325–348, 1987.
- P. Grinfeld. Hamiltonian Dynamic Equations for Fluid Films. Studies in Applied Mathematics, 125(3):223–264, 2010.
- P. Grinfeld. Small oscillations of a soap bubble. Stud. Appl. Math., 128(1):30–39, 2012.
- J. Hadamard. Le problème de cauchy et les équations aux dérivées partielles linéaires hyperboliques. Paris, 11:243–264, 1932.
- E. Hebey. Nonlinear analysis on manifolds : Sobolev spaces and inequalities, volume 5 of Courant Lecture Notes in Mathematics. American Mathematical Society, New York, NY, 2000.
- K. Ho. FLAM: Fast Linear Algebra in MATLAB - Algorithms for Hierarchical Matrices. J. Open Source Softw., 5(51):1906, 2020.
- L. Hormander. The Analysis of Linear Partial Differential Operators III. Springer-Verlag, 1994.
- Boundary integral equations. Applied mathematical sciences (Springer-Verlag New York Inc.) ; v. 164. Springer, 2nd edition, 2021.
- L. M. Imbert-Gérard and L. Greengard. Pseudo-Spectral Methods for the Laplace-Beltrami Equation and the Hodge Decomposition on Surfaces of Genus One. Numerical Methods for Partial Differential Equations, 33(3):941–955, 2017.
- F. John. Partial Differential Equations. Springer-Verlag, New York, NY, 4th edition, 1982.
- A closest point method for surface pdes with interior boundary conditions for geometry processing. arXiv:2305.04711, 2023.
- J. Kromer and D. Bothe. Highly accurate numerical computation of implicitly defined volumes using the Laplace-Beltrami operator. arXiv:1805.03136, pages 1–25, 2018.
- M. C. Kropinski and N. Nigam. Fast integral equation methods for the Laplace-Beltrami equation on the sphere. Adv. Comput. Math., 40(2):577–596, 2014.
- Integral equation methods for the Yukawa-Beltrami equation on the sphere. Adv. Comput. Math., 42(2):469–488, 2016.
- The vibrations of bubbles and balloons. Acoustics Australia, 40(3):183–187, 2012.
- P. D. Lax. Functional analysis, volume 55. John Wiley & Sons, 2002.
- G. Leoni. A First Course in Sobolev Spaces: Second Edition. American Mathematical Society, Providence, Rhode Island, second edition, 2017.
- Level set equations on surfaces via the closest point method. J. Sci. Comput., 35:219–240, 2008.
- The implicit closest point method for the numerical solution of partial differential equations on surfaces. SIAM Journal on Scientific Computing, 31(6):4330–4350, 2010.
- Taylor States in Stellarators: A Fast High-order Boundary Integral Solver. J. Comput. Phys., Feb 2019.
- P.-G. Martinsson. Fast direct solvers for elliptic PDEs. SIAM, 2019.
- P.-G. Martinsson and V. Rokhlin. A fast direct solver for boundary integral equations in two dimensions. J. Comput. Phys., 205(1):1–23, 2005.
- P.-G. Martinsson and V. Rokhlin. An accelerated kernel-independent fast multipole method in one dimension. SIAM J. Sci. Comput., 29(3):1160–1178, 2007.
- A. Naumovets and Y. S. Vedula. Surface diffusion of adsorbates. Surface Science Reports, 4(7-8):365–434, 1985.
- J.-C. Nedéléc. Acoustic and Electromagnetic Equations. Springer-Verlag, New York, NY, 2001.
- Diffusion on a curved surface coupled to diffusion in the volume: Application to cell biology. J. Comput. Phys., 226(2):1271–1290, 2007.
- M. O’Neil. Second-kind integral equations for the Laplace-Beltrami problem on surfaces in three dimensions. Adv. Comput. Math., 44(5):1385–1409, 2018.
- M. O’Neil and A. J. Cerfon. An integral equation-based numerical solver for Taylor states in toroidal geometries. J. Comput. Phys., 359:263–282, 2018.
- J. Punchin. Weakly singular integral operators as mappings between function spaces. The Journal of Integral Equations and Applications, pages 303–320, 1988.
- M. Rachh. Integral equation methods for problems in electrostatics, elastostatics and viscous flow. PhD thesis, New York University, 2015.
- Petascale direct numerical simulation of blood flow on 200k cores and heterogeneous architectures. In SC’10: Proceedings of the 2010 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis, pages 1–11. IEEE, 2010.
- S. J. Ruuth and B. Merriman. A simple embedding method for solving partial differential equations on surfaces. J. Comput. Phys., 227(3):1943–1961, 2008.
- Y. Saad and M. H. Schultz. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 7(3):856–869, 1986.
- B. Vallet and B. Lévy. Spectral Geometry Processing with Manifold Harmonics. Computer Graphics Forum, 27(2):251–260, 2008.
- A fast algorithm for simulating vesicle flows in three dimensions. J. Comput. Phys., 230(14):5610–5634, 2011.
- B. Vioreanu and V. Rokhlin. Spectra of Multiplication Operators as a Numerical Tool. SIAM J. Sci. Comput., 36(1):A267–A288, 2014.
- Modified Virtual Grid Difference for Discretizing the Laplace–Beltrami Operator on Point Clouds. SIAM J. Sci. Comput., 40(1):A1–A21, 2018.
- F. W. Warner. Foundations of Differentiable Manifolds and Lie Groups. Springer, New York, NY, 2013.
- X. Xing and E. Chow. Interpolative decomposition via proxy points for kernel matrices. SIAM J. Matrix Anal. Appl., 41(1):221–243, 2020.
- A kernel-independent adaptive fast multipole algorithm in two and three dimensions. J. Comput. Phys., 196(2):591–626, 2004.