Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving Zero-noise Extrapolation for Quantum-gate Error Mitigation using a Noise-aware Folding Method (2401.12495v2)

Published 23 Jan 2024 in quant-ph

Abstract: Recent thousand-qubit processors represent a significant hardware advancement, but current limitations prevent effective quantum error correction (QEC), necessitating reliance on quantum error mitigation (QEM) to enhance result fidelity from quantum computers. Our paper introduces a noise-aware folding technique that enhances Zero-Noise Extrapolation (ZNE) by leveraging the noise characteristics of target quantum hardware to fold circuits more efficiently. Unlike traditional ZNE approaches assuming uniform error distribution, our method redistributes noise using calibration data based on hardware noise models. By employing a noise-adaptive compilation method combined with our proposed folding mechanism, we enhance the ZNE accuracy of quantum gate-based computing using superconducting quantum computers. This paper highlights the uniqueness of our method, summarizes noise accumulation, presents the scaling algorithm, and compares the reliability of our method with those of existing models using linear extrapolation model. Experimental results show that compared to existing folding methods, our approach achieved a 35% improvement on quantum computer simulators and a 31% improvement on real quantum computers, demonstrating the effectiveness of our proposed approach.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (12)
  1. O. Ezratty, Perspective on superconducting qubit quantum computing, The European Physical Journal A 59, 94 (2023).
  2. S. Sussman, Quantum Computing With an Open Source Qubit Controller, Ph.D. thesis, Princeton University (2023).
  3. N. Jyothi Ahuja and S. Dutt, Implications of quantum science on industry 4.0: Challenges and opportunities, Quantum and Blockchain for Modern Computing Systems: Vision and Advancements: Quantum and Blockchain Technologies: Current Trends and Challenges , 183 (2022).
  4. D. Qin, X. Xu, and Y. Li, An overview of quantum error mitigation formulas, Chinese Physics B  (2022).
  5. K. Temme, S. Bravyi, and J. M. Gambetta, Error mitigation for short-depth quantum circuits, Physical review letters 119, 180509 (2017).
  6. S. Ramadhani, J. U. Rehman, and H. Shin, Quantum error mitigation for quantum state tomography, IEEE Access 9, 107955 (2021).
  7. S. S. Tannu and M. K. Qureshi, Mitigating measurement errors in quantum computers by exploiting state-dependent bias, in Proceedings of the 52nd annual IEEE/ACM international symposium on microarchitecture (2019) pp. 279–290.
  8. S. Niu and A. Todri-Sanial, Effects of dynamical decoupling and pulse-level optimizations on ibm quantum computers, IEEE Transactions on Quantum Engineering 3, 1 (2022).
  9. S. Endo, S. C. Benjamin, and Y. Li, Practical quantum error mitigation for near-future applications, Physical Review X 8, 031027 (2018).
  10. K.-C. Chen, Short-depth circuits and error mitigation for large-scale ghz-state preparation, and benchmarking on ibm’s 127-qubit system, in 2023 IEEE International Conference on Quantum Computing and Engineering (QCE), Vol. 2 (IEEE, 2023) pp. 207–210.
  11. Qiskit contributors, Qiskit: An open-source framework for quantum computing (2023).
  12. E. Bernstein and U. Vazirani, Quantum complexity theory, SIAM Journal on Computing 26, 1411 (1997), https://doi.org/10.1137/S0097539796300921 .
Citations (2)

Summary

We haven't generated a summary for this paper yet.