Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploration and Improvement of Nerf-based 3D Scene Editing Techniques (2401.12456v1)

Published 23 Jan 2024 in cs.CV, cs.AI, and cs.GR

Abstract: NeRF's high-quality scene synthesis capability was quickly accepted by scholars in the years after it was proposed, and significant progress has been made in 3D scene representation and synthesis. However, the high computational cost limits intuitive and efficient editing of scenes, making NeRF's development in the scene editing field facing many challenges. This paper reviews the preliminary explorations of scholars on NeRF in the scene or object editing field in recent years, mainly changing the shape and texture of scenes or objects in new synthesized scenes; through the combination of residual models such as GaN and Transformer with NeRF, the generalization ability of NeRF scene editing has been further expanded, including realizing real-time new perspective editing feedback, multimodal editing of text synthesized 3D scenes, 4D synthesis performance, and in-depth exploration in light and shadow editing, initially achieving optimization of indirect touch editing and detail representation in complex scenes. Currently, most NeRF editing methods focus on the touch points and materials of indirect points, but when dealing with more complex or larger 3D scenes, it is difficult to balance accuracy, breadth, efficiency, and quality. Overcoming these challenges may become the direction of future NeRF 3D scene editing technology.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Shun Fang (3 papers)
  2. Ming Cui (7 papers)
  3. Xing Feng (15 papers)
  4. Yanan Zhang (39 papers)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets