Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-agent deep reinforcement learning with centralized training and decentralized execution for transportation infrastructure management (2401.12455v1)

Published 23 Jan 2024 in cs.MA, cs.AI, cs.LG, cs.SY, and eess.SY

Abstract: We present a multi-agent Deep Reinforcement Learning (DRL) framework for managing large transportation infrastructure systems over their life-cycle. Life-cycle management of such engineering systems is a computationally intensive task, requiring appropriate sequential inspection and maintenance decisions able to reduce long-term risks and costs, while dealing with different uncertainties and constraints that lie in high-dimensional spaces. To date, static age- or condition-based maintenance methods and risk-based or periodic inspection plans have mostly addressed this class of optimization problems. However, optimality, scalability, and uncertainty limitations are often manifested under such approaches. The optimization problem in this work is cast in the framework of constrained Partially Observable Markov Decision Processes (POMDPs), which provides a comprehensive mathematical basis for stochastic sequential decision settings with observation uncertainties, risk considerations, and limited resources. To address significantly large state and action spaces, a Deep Decentralized Multi-agent Actor-Critic (DDMAC) DRL method with Centralized Training and Decentralized Execution (CTDE), termed as DDMAC-CTDE is developed. The performance strengths of the DDMAC-CTDE method are demonstrated in a generally representative and realistic example application of an existing transportation network in Virginia, USA. The network includes several bridge and pavement components with nonstationary degradation, agency-imposed constraints, and traffic delay and risk considerations. Compared to traditional management policies for transportation networks, the proposed DDMAC-CTDE method vastly outperforms its counterparts. Overall, the proposed algorithmic framework provides near optimal solutions for transportation infrastructure management under real-world constraints and complexities.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (119)
  1. American Society of Civil Engineering (ASCE), “Infrastructure report card,” 2021. Last accessed Aug. 12 2023: https://infrastructurereportcard.org/wp-content/uploads/2020/12/2021-IRC-Executive-Summary-1.pdf.
  2. VDOT, “Preservation, maintenance, repair, widening and rehabilitation, chapter 32,” tech. rep., Virginia Department of Transportation, 2022. Last accessed Aug. 12 2023: https://www.virginiadot.org/business/resources/bridge/manuals/part2/chapter32.pdf.
  3. R. Bellman, Dynamic programming. Princeton University Press, 1957.
  4. J. Pineau, G. Gordon, and S. Thrun, “Point-based value iteration: An anytime algorithm for POMDPs,” in IJCAI, vol. 3, pp. 1025–1032, 2003.
  5. P. Bocchini and D. Frangopol, “A probabilistic computational framework for bridge network optimal maintenance scheduling,” Reliability Engineering & System Safety, vol. 96, no. 2, p. 332–49, 2011.
  6. D. Saydam and D. Frangopol, “Risk-based maintenance optimization of deteriorating bridges,” Journal of Structural Engineering, vol. 141, no. 4, p. 04014120, 2014.
  7. D. Yang and D. Frangopol, “Life-cycle management of deteriorating civil infrastructure considering resilience to lifetime hazards: A general approach based on renewal-reward processes,” Reliability Engineering & System Safety, vol. 183, p. 197–212, 2019.
  8. M. Marseguerra, E. Zio, and L. Podofillini, “Condition-based maintenance optimization by means of genetic algorithms and Monte Carlo simulation,” Reliability Engineering & System Safety, vol. 77, no. 2, p. 151–65, 2002.
  9. J. C. Chu and Y.-J. Chen, “Optimal threshold-based network-level transportation infrastructure life-cycle management with heterogeneous maintenance actions,” Transportation Research Part B: Methodological, vol. 46, no. 9, pp. 1123–1143, 2012.
  10. J. Mendoza, E. Bismut, D. Straub, and J. Köhler, “Risk-based fatigue design considering inspections and maintenance,” ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, vol. 7, no. 1, p. 04020055, 2021.
  11. G. Zhou and L. Wang, “Co-location decision tree for enhancing decision-making of pavement maintenance and rehabilitation,” Transportation Research Part C: Emerging Technologies, vol. 21, no. 1, pp. 287–305, 2012.
  12. D. Frangopol, K. Lin, and A. Estes, “Life-cycle cost design of deteriorating structures,” Journal of Structural Engineering, vol. 123, no. 10, p. 1390–401, 1997.
  13. M. Faber and M. Stewart, “Risk assessment for civil engineering facilities: critical overview and discussion,” Reliability Engineering & System Safety, vol. 80, no. 2, p. 173–84, 2003.
  14. D. Straub and M. Faber, “Risk based inspection planning for structural systems,” Structural Safety, vol. 27, no. 4, p. 335–355, 2005.
  15. J. Luque and D. Straub, “Risk-based optimal inspection strategies for structural systems using dynamic Bayesian networks,” Structural Safety, vol. 76, p. 60–80, 2019.
  16. J. Santos, C. Torres-Machi, S. Morillas, and V. Cerezo, “A fuzzy logic expert system for selecting optimal and sustainable life cycle maintenance and rehabilitation strategies for road pavements,” International journal of pavement engineering, vol. 23, no. 2, pp. 425–437, 2022.
  17. D. M. Frangopol and M. Liu, “Maintenance and management of civil infrastructure based on condition, safety, optimization, and life-cycle cost,” Structure and Infrastructure Engineering, vol. 3, no. 1, pp. 29–41, 2007.
  18. S. Petchrompo and A. K. Parlikad, “A review of asset management literature on multi-asset systems,” Reliability Engineering & System Safety, vol. 181, pp. 181–201, 2019.
  19. S. Madanat, “Optimal infrastructure management decisions under uncertainty,” Transportation Research Part C: Emerging Technologies, vol. 1, no. 1, p. 77–88, 1993.
  20. H. Ellis, M. Jiang, and R. Corotis, “Inspection, maintenance, and repair with partial observability,” Journal of Infrastructure Systems, vol. 1, no. 2, p. 92–99, 1995.
  21. K. G. Papakonstantinou and M. Shinozuka, “Optimum inspection and maintenance policies for corroded structures using partially observable markov decision processes and stochastic, physically based models,” Probabilistic Engineering Mechanics, vol. 37, p. 93–108, 2014.
  22. K. G. Papakonstantinou, C. P. Andriotis, and M. Shinozuka, “POMDP and MOMDP solutions for structural life-cycle cost minimization under partial and mixed observability,” Structure and Infrastructure Engineering, vol. 14, no. 7, p. 869–882, 2018.
  23. L. Kaelbling, M. Littman, and A. Cassandra, “Planning and acting in partially observable stochastic domains,” Artificial Intelligence, vol. 101, no. 1, p. 99–134, 1998.
  24. K. G. Papakonstantinou and M. Shinozuka, “Planning structural inspection and maintenance policies via dynamic programming and Markov processes. Part I: Theory.,” Reliability Engineering & System Safety, vol. 130, p. 202–213, 2014.
  25. K. G. Papakonstantinou and M. Shinozuka, “Planning structural inspection and maintenance policies via dynamic programming and markov processes. Part II: POMDP implementation,” Reliability Engineering & System Safety, vol. 130, p. 214–224, 2014.
  26. K. G. Papakonstantinou, C. P. Andriotis, and M. Shinozuka, “Point-based POMDP solvers for life-cycle cost minimization of deteriorating structures,” in Proceedings of the 5th International Symposium on Life-Cycle Civil Engineering (IALCCE 2016), Delft, The Netherlands, p. 427, 2016.
  27. M. Memarzadeh and M. Pozzi, “Integrated inspection scheduling and maintenance planning for infrastructure systems,” Computer-Aided Civil and Infrastructure Engineering, vol. 31, no. 6, p. 403–415, 2016.
  28. R. Schöbi and E. N. Chatzi, “Maintenance planning using continuous-state partially observable Markov decision processes and non-linear action models,” Structure and Infrastructure Engineering, vol. 12, no. 8, p. 977–994, 2016.
  29. M. Memarzadeh, M. Pozzi, and J. Zico Kolter, “Optimal planning and learning in uncertain environments for the management of wind farms,” Journal of Computing in Civil Engineering, vol. 29, no. 5, p. 04014076, 2015.
  30. İpek Kıvanç, D. Özgür Ünlüakın, and T. Bilgiç, “Maintenance policy analysis of the regenerative air heater system using factored POMDPs,” Reliability Engineering & System Safety, vol. 219, p. 108195, 2022.
  31. C. Guo and Z. Liang, “A predictive Markov decision process for optimizing inspection and maintenance strategies of partially observable multi-state systems,” Reliability Engineering & System Safety, vol. 226, p. 108683, 2022.
  32. P. G. Morato, K. G. Papakonstantinou, C. P. Andriotis, J. S. Nielsen, and P. Rigo, “Optimal inspection and maintenance planning for deteriorating structural components through dynamic Bayesian networks and Markov decision processes,” Structural Safety, vol. 94, p. 102140, 2022.
  33. G. Arcieri, C. Hoelzl, O. Schwery, D. Straub, K. G. Papakonstantinou, and E. Chatzi, “Bridging POMDPs and Bayesian decision making for robust maintenance planning under model uncertainty: An application to railway systems,” Reliability Engineering & System Safety, vol. 239, p. 109496, 2023.
  34. S. Madanat and M. Ben-Akiva, “Optimal inspection and repair policies for infrastructure,” Transportation Science, vol. 28, no. 1, p. 55–62, 1994.
  35. V. M. Guillaumot, P. L. Durango-Cohen, and S. M. Madanat, “Adaptive optimization of infrastructure maintenance and inspection decisions under performance model uncertainty,” Journal of Infrastructure Systems, vol. 9, no. 4, pp. 133–139, 2003.
  36. L. Zhang, W. Gu, Y.-J. Byon, and J. Lee, “Condition-based pavement management systems accounting for model uncertainty and facility heterogeneity with belief updates,” Transportation Research Part C: Emerging Technologies, vol. 148, p. 104054, 2023.
  37. H. Shon and J. Lee, “Integrating multi-scale inspection, maintenance, rehabilitation, and reconstruction decisions into system-level pavement management systems,” Transportation Research Part C: Emerging Technologies, vol. 131, p. 103328, 2021.
  38. M. Spaan and N. Vlassis, “Perseus: Randomized point-based value iteration for POMDPs,” Journal of Artificial Intelligence Research, vol. 24, p. 195–220, 2005.
  39. G. Shani, J. Pineau, and R. Kaplow, “A survey of point-based POMDP solvers,” Autonomous Agents and Multi-Agent Systems, vol. 27, no. 1, p. 1–51, 2013.
  40. W. S. Lovejoy, “A survey of algorithmic methods for partially observed Markov decision processes,” Annals of Operations Research, vol. 28, no. 1, pp. 47–65, 1991.
  41. V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al., “Human-level control through deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.
  42. J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017.
  43. X. Lei, Y. Xia, L. Deng, and L. Sun, “A deep reinforcement learning framework for life-cycle maintenance planning of regional deteriorating bridges using inspection data,” Structural and Multidisciplinary Optimization, vol. 65, no. 5, p. 149, 2022.
  44. A. Du and A. Ghavidel, “Parameterized deep reinforcement learning-enabled maintenance decision-support and life-cycle risk assessment for highway bridge portfolios,” Structural Safety, vol. 97, p. 102221, 2022.
  45. Z. Hamida and J.-A. Goulet, “Hierarchical reinforcement learning for transportation infrastructure maintenance planning,” Reliability Engineering & System Safety, vol. 235, p. 109214, 2023.
  46. R. Mohammadi and Q. He, “A deep reinforcement learning approach for rail renewal and maintenance planning,” Reliability Engineering & System Safety, vol. 225, p. 108615, 2022.
  47. Z. Ye, Z. Cai, H. Yang, S. Si, and F. Zhou, “Joint optimization of maintenance and quality inspection for manufacturing networks based on deep reinforcement learning,” Reliability Engineering & System Safety, vol. 236, p. 109290, 2023.
  48. G. Arcieri, C. Hoelzl, O. Schwery, D. Straub, K. G. Papakonstantinou, and E. Chatzi, “Pomdp inference and robust solution via deep reinforcement learning: An application to railway optimal maintenance,” arXiv preprint arXiv:2307.08082, 2023.
  49. J. Lee and M. Mitici, “Deep reinforcement learning for predictive aircraft maintenance using probabilistic remaining-useful-life prognostics,” Reliability Engineering & System Safety, vol. 230, p. 108908, 2023.
  50. E. Zhang, R. Zhang, and N. Masoud, “Predictive trajectory planning for autonomous vehicles at intersections using reinforcement learning,” Transportation Research Part C: Emerging Technologies, vol. 149, p. 104063, 2023.
  51. M. Yazdani, M. Sarvi, S. Asadi Bagloee, N. Nassir, J. Price, and H. Parineh, “Intelligent vehicle pedestrian light (IVPL): A deep reinforcement learning approach for traffic signal control,” Transportation Research Part C: Emerging Technologies, vol. 149, p. 103991, 2023.
  52. C. P. Andriotis and K. G. Papakonstantinou, “Life-cycle policies for large engineering systems under complete and partial observability,” in 13th International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP), Seoul, South Korea, 2019.
  53. C. P. Andriotis and K. G. Papakonstantinou, “Managing engineering systems with large state and action spaces through deep reinforcement learning,” Reliability Engineering & System Safety, vol. 191, p. 106483, 2019.
  54. Z. Wang, V. Bapst, N. Heess, R. Munos, K. Kavukcuoglu, and N. Freitas, “Sample efficient actor-critic with experience replay,” 2016. arXiv preprint arXiv:1611.01224,.
  55. T. Degris, M. White, and R. S. Sutton, “Off-policy actor-critic,” arXiv preprint arXiv:1205.4839, 2012.
  56. M. Putterman, Markov Decision Process: Discrete Stochastic Dynamic. New York: Wiley, 1994.
  57. W. Zhou, E. Miller-Hooks, K. G. Papakonstantinou, S. Stoffels, and S. McNeil, “A reinforcement learning method for multi-asset roadway improvement scheduling considering traffic impacts,” Journal of Infrastructure Systems, vol. 28, no. 4, p. 04022033, 2022.
  58. D. Y. Yang, “Adaptive risk-based life-cycle management for large-scale structures using deep reinforcement learning and surrogate modeling,” Journal of Engineering Mechanics, vol. 148, no. 1, p. 04021126, 2022.
  59. C. P. Andriotis and K. G. Papakonstantinou, “Deep reinforcement learning driven inspection and maintenance planning under incomplete information and constraints,” Reliability Engineering & System Safety, vol. 212, p. 107551, 2021.
  60. P. G. Morato, C. P. Andriotis, K. G. Papakonstantinou, and P. Rigo, “Inference and dynamic decision-making for deteriorating systems with probabilistic dependencies through Bayesian networks and deep reinforcement learning,” Reliability Engineering & System Safety, vol. 235, p. 109144, 2023.
  61. C. P. Andriotis and K. G. Papakonstantinou, “Optimizing policies for deteriorating systems considering ordered action structuring and value of information,” in 13th International Conference on Structural Safety & Reliability (ICOSSAR), 2022.
  62. M. Saifullah, C. P. Andriotis, and K. G. Papakonstantinou, “The role of value of information in multi-agent deep reinforcement learning for optimal decision-making under uncertainty,” in 14th International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP14), Dublin, 2023.
  63. V.-T. Nguyen, P. Do, A. Vosin, and B. Iung, “Artificial-intelligence-based maintenance decision-making and optimization for multi-state component systems,” Reliability Engineering & System Safety, vol. 228, p. 108757, 2022.
  64. P. Sunehag, G. Lever, A. Gruslys, W. M. Czarnecki, V. Zambaldi, M. Jaderberg, M. Lanctot, N. Sonnerat, J. Z. Leibo, K. Tuyls, and T. Graepel, “Value-decomposition networks for cooperative multi-agent learning,” arXiv preprint arXiv:1706.05296, 2017.
  65. D. Lee and J. Song, “Risk-informed operation and maintenance of complex lifeline systems using parallelized multi-agent deep q-network,” Reliability Engineering & System Safety, p. 109512, 2023.
  66. J. Su, S. Adams, and P. Beling, “Value-decomposition multi-agent actor-critics,” in Proceedings of the AAAI conference on Artificial Intelligence, vol. 35, pp. 11352–11360, 2021.
  67. J. Su, J. Huang, S. Adams, Q. Chang, and P. A. Beling, “Deep multi-agent reinforcement learning for multi-level preventive maintenance in manufacturing systems,” Expert Systems with Applications, vol. 192, p. 116323, 2022.
  68. X. Wang, H. Wang, and C. Qi, “Multi-agent reinforcement learning based maintenance policy for a resource constrained flow line system,” Journal of Intelligent Manufacturing, vol. 27, pp. 325–333, 2016.
  69. M. L. R. Rodríguez, S. Kubler, A. de Giorgio, M. Cordy, J. Robert, and Y. Le Traon, “Multi-agent deep reinforcement learning based predictive maintenance on parallel machines,” Robotics and Computer-Integrated Manufacturing, vol. 78, p. 102406, 2022.
  70. P. Leroy, P. G. Morato, J. Pisane, A. Kolios, and D. Ernst, “Imp-marl: a suite of environments for large-scale infrastructure management planning via marl,” arXiv preprint arXiv:2306.11551, 2023.
  71. M. Saifullah, C. P. Andriotis, K. G. Papakonstantinou, and S. M. Stoffels, “Deep reinforcement learning-based life-cycle management of deteriorating transportation systems,” in Bridge Safety, Maintenance, Management, Life-Cycle, Resilience and Sustainability: Proceedings of the 11t⁢hsuperscript11𝑡ℎ11^{th}11 start_POSTSUPERSCRIPT italic_t italic_h end_POSTSUPERSCRIPT International Conference on Bridge Maintenance, Safety and Management (IABMAS), Barcelona, Spain, pp. 293–301, CRC Press, 2022.
  72. F. A. Oliehoek and C. Amato, A concise introduction to decentralized POMDPs. Springer, 2016.
  73. D. S. Bernstein, R. Givan, N. Immerman, and S. Zilberstein, “The complexity of decentralized control of Markov decision processes,” Mathematics of Operations Research, vol. 27, no. 4, pp. 819–840, 2002.
  74. E. Sondik, The optimal control of partially observable Markov processes. Stanford, CA: Stanford University, Stanford Electronics Labs, 1971.
  75. H. Kurniawati, D. Hsu, and W. S. Lee, “Sarsop: Efficient point-based POMDP planning by approximating optimally reachable belief spaces,” in Robotics: Science and systems, vol. 2008, Citeseer, 2008.
  76. R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press, 2018.
  77. R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy gradient methods for reinforcement learning with function approximation,” in Advances in Neural Information Processing Systems, pp. 1057–1063, 2000.
  78. H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double q-learning,” in Proceedings of the AAAI conference on Artificial Intelligence, vol. 30, 2016.
  79. R. J. Williams, “Simple statistical gradient-following algorithms for connectionist reinforcement learning,” Machine Learning, vol. 8, no. 3-4, pp. 229–256, 1992.
  80. J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel, “Trust region policy optimization,” in Proceedings of the 32nd International Conference on Machine Learning (ICML-15), pp. 1889–1897, 2015.
  81. T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra, “Continuous control with deep reinforcement learning,” arXiv preprint arXiv:1509.02971, 2015.
  82. V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning,” in International Conference on Machine Learning, pp. 1928–1937, PMLR, 2016.
  83. R. S. Sutton, “Learning to predict by the methods of temporal differences,” Machine Learning, vol. 3, no. 1, pp. 9–44, 1988.
  84. F. A. Oliehoek, M. T. Spaan, and N. Vlassis, “Optimal and approximate q-value functions for decentralized pomdps,” Journal of Artificial Intelligence Research, vol. 32, pp. 289–353, 2008.
  85. J. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson, “Counterfactual multi-agent policy gradients,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32, 2018.
  86. T. Rashid, M. Samvelyan, C. Schroeder, G. Farquhar, J. Foerster, and S. Whiteson, “Qmix: Monotonic value function factorisation for deep multi-agent reinforcement learning,” in International Conference on Machine Learning, pp. 4295–4304, PMLR, 2018.
  87. S. Gronauer and K. Diepold, “Multi-agent deep reinforcement learning: a survey,” Artificial Intelligence Review, pp. 1–49, 2022.
  88. D. P. Bertsekas, “Nonlinear programming,” Journal of the Operational Research Society, vol. 48, no. 3, pp. 334–334, 1997.
  89. M. Hasnat, R. R. Singh, M. E. Kutay, J. Bryce, S. W. Haider, and B. Cetin, “Comparative study of different condition indices using Michigan department of transportation’s flexible distress data,” Transportation Research Record, p. 03611981231156917, 2023.
  90. S. W. Katicha, S. Ercisli, G. W. Flintsch, J. M. Bryce, and B. K. Diefenderfer, “Development of enhanced pavement deterioration curves,” tech. rep., Virginia Transportation Research Council, 2016.
  91. T. Chowdhury, “Supporting document for the development and enhancement of the pavement maintenance decision matrices used in the needs-based analysis,” tech. rep., Virginia Transportation Research Council, Maintenance Division, Richmond, VA, 2016.
  92. K. G. Papakonstantinou, H. Nikbakht, and E. Eshra, “Hamiltonian MCMC methods for estimating rare events probabilities in high-dimensional problems,” Probabilistic Engineering Mechanics, vol. 74, p. 103485, 2023.
  93. Dye Management Group Inc., “Monitoring highway assets with remote technology,” technical report, Michigan Department of Transportation, 2014.
  94. “Frequently asked question: How much does it cost to build a mile of road?.” Last accessed Aug. 1, 2023: https://www.artba.org/about/faq/.
  95. “Cost per mile models by FDOT,” 2022. Last Accessed Aug. 12, 2023: https://www.fdot.gov/programmanagement/estimates/documents/costpermilemodelsreports.
  96. PennDOT, “Road Maintenance and Preservation (MaP),” 2017. Last accessed Aug. 12, 2023: https://www.penndot.pa.gov/about-us/Documents/PennDOT%20Road%20MaP%20Initiative.pdf.
  97. ADOT, “Production rates guidelines for Arizona highway construction,” 2018. Last accessed Aug. 12, 2023: https://azdot.gov/sites/default/files/2019/06/adot-typical-production-rates.pdf.
  98. PennDOT, “Publication 242 pavement policy manual, (May 2015 edition) change no. 5,” tech. rep., Pennsylvania Department of Transportation, 2019. Last accessed Aug. 12, 2023: https://www.butlercountypa.gov/DocumentCenter/View/1555/PennDOT-Publication-242-Pavement-Policy-Manual-PDF.
  99. T. D. Gillespie, W. Paterson, and M. W. Sayers, “Guidelines for conducting and calibrating road roughness measurements,” tech. rep., The World Bank, 1986.
  100. R. Faddoul, W. Raphael, A.-H. Soubra, and A. Chateauneuf, “Incorporating Bayesian networks in Markov decision processes,” Journal of Infrastructure Systems, vol. 19, no. 4, p. 415–424, 2013.
  101. United States Department of Transportation, “1999 Status of the nation’s highways, bridges and transit: Conditions & performance, a report to Congress: Executive summary.” 2000. Last accessed Aug. 04, 2023: https://rosap.ntl.bts.gov/view/dot/15379.
  102. Pennsylvania Department of Transportation and Bureau of Design, “Bridge Management System 2 (BMS2) coding manual: Publication 100A, 2022 edition,” 2022. Last accessed Aug. 12, 2023: https://www.dot.state.pa.us/public/Pubsforms/Publications/PUB%20100A.pdf.
  103. A. Manafpour, I. Guler, A. Radlińska, F. Rajabipour, and G. Warn, “Stochastic analysis and time-based modeling of concrete bridge deck deterioration,” Journal of Bridge Engineering, vol. 23, no. 9, p. 04018066, 2018.
  104. K. G. Papakonstantinou, E. Eshra, and H. Nikbakht, “Hamiltonian MCMC based framework for time-variant rare event uncertainty quantification,” in 14th International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP), Dublin, Ireland, 2023.
  105. Federal Highway Administration, Bridge Replacement Unit Costs. Washington D.C: FHWA, 2019.
  106. D. T. Wells, “Technical assistance report: Maintenance, repair, and rehabilitation unit costs for PONTIS,” tech. rep., Virginia Transportation Research Council, 1995. Last accesed Aug. 12, 2023: https://rosap.ntl.bts.gov/view/dot/20088.
  107. C. Goodspeed and J. Brown, “Gilford rapid bridge deck replacement, a project summary,” tech. rep., University of New Hampshire, 2017. Last accessed Aug. 12, 2023: https://www.nh.gov/dot/org/projectdevelopment/materials/research/projects/documents/15680XGilfordRapidDeckReplacementprojectsummary.pdf.
  108. Oakgrove, Accelerated Bridge Construction-Four Bridge Deck Replacements in Region 5. Oakgrove Construction, Inc, 2013.
  109. “Daily Vehicle Miles Traveled (DVMT) by maintenance jurisdiction,” 2019. Last accessed Aug. 12, 2023: https://www.virginiadot.org/info/resources/Traffic_2019/VMTReport_2200_2019.pdf.
  110. Hampton Roads Planning District Commision (HRPDC), “Hampton roads maps.” Last accessed Aug. 12, 2023: https://www.hrpdcva.gov/page/maps/.
  111. G. Vadakpat, S. Stoffels, and K. Dixon, “Road user cost models for network-level pavement management,” Transportation Research Record, vol. 1699, no. 1, pp. 49–57, 2000.
  112. Federal Highway Administration, “Work Zone Road User Costs - Concepts and Applications: Chapter 2. Work zone road user costs.” Last accessed Aug 12, 2023: https://ops.fhwa.dot.gov/wz/resources/publications/fhwahop12005/sec2.htm.
  113. Federal Highway Administration and United States Department of Transportation, “23 CFR 490.411: Establishment of minimum level for condition for bridges.” Last accessed Aug. 12, 2023: https://www.ecfr.gov/current/title-23/section-490.411.
  114. Federal Highway Administration and United States Department of Transportation, “23 CFR 490.315: Establishment of minimum level for condition of pavements.” Last accessed Aug. 12, 2023: https://www.ecfr.gov/current/title-23/part-490/section-490.315.
  115. S. Brich, G. Moore, T. Chowdhury, and A. Matteo, “Pavement and bridge overview,” 2018. Last accessed Aug. 12, 2023: https://www.ctb.virginia.gov/resources/2018/june/pres/7_pavement_bridges_overview.pdf.
  116. Virginia Department of Transportation, “Maintenance and operations comprehensive review,” 2019. Last accessed Aug. 12, 2023: https://www.virginiadot.org/projects/resources/legstudies/Maintenance_and_Operations_Comprehensive_Review_%E2%80%93_2019.pdf.
  117. Hampton Roads Transportation Planning Organization (HRTPO), “The state of transportation in Hampton roads,” 2020. Last accessed Aug. 12, 2023: https://www.hrtpo.org/uploads/docs/T21-03_State%20of%20Transportation%202020%20-%20Final%20Report%20TPO%20Board.pdf.
  118. Virginia Department of Transportation, “Pavement condition map.” Last accessed Aug. 12, 2023: https://vdot.maps.arcgis.com/apps/webappviewer/index.html?id=d93cecc94efb4bda9213d0c3cef73ce4.
  119. Virginia Department of Transportation, “Structure condition map.” Last accessed Aug. 12, 2023: https://dashboard.virginiadot.org/pages/maintenance/bridge.aspx.
Citations (2)

Summary

We haven't generated a summary for this paper yet.