Quantitative Analysis of Molecular Transport in the Extracellular Space Using Physics-Informed Neural Network (2401.12435v2)
Abstract: The brain extracellular space (ECS), an irregular, extremely tortuous nanoscale space located between cells or between cells and blood vessels, is crucial for nerve cell survival. It plays a pivotal role in high-level brain functions such as memory, emotion, and sensation. However, the specific form of molecular transport within the ECS remain elusive. To address this challenge, this paper proposes a novel approach to quantitatively analyze the molecular transport within the ECS by solving an inverse problem derived from the advection-diffusion equation (ADE) using a physics-informed neural network (PINN). PINN provides a streamlined solution to the ADE without the need for intricate mathematical formulations or grid settings. Additionally, the optimization of PINN facilitates the automatic computation of the diffusion coefficient governing long-term molecule transport and the velocity of molecules driven by advection. Consequently, the proposed method allows for the quantitative analysis and identification of the specific pattern of molecular transport within the ECS through the calculation of the Peclet number. Experimental validation on two datasets of magnetic resonance images (MRIs) captured at different time points showcases the effectiveness of the proposed method. Notably, our simulations reveal identical molecular transport patterns between datasets representing rats with tracer injected into the same brain region. These findings highlight the potential of PINN as a promising tool for comprehensively exploring molecular transport within the ECS.
- E. Syková and C. Nicholson, “Diffusion in brain extracellular space,” Physiol. Rev., vol. 88, no. 4, pp. 1277–1340, 2008.
- R. Wang, H. Han, K. Shi, I. L. Alberts, A. Rominger, C. Yang, J. Yan, D. Cui, Y. Peng, Q. He, Y. Gao, J. Lian, S. Yang, H. Liu, J. Yang, C. Wong, X. Wei, F. Yin, Y. Jia, H. Tong, B. Liu, and J. Lei, “The alteration of brain interstitial fluid drainage with myelination development,” Aging Dis., vol. 12, no. 7, p. 1729, 2021.
- J. J. Iliff, M. Wang, Y. Liao, B. A. Plogg, W. Peng, G. A. Gundersen, H. Benveniste, G. E. Vates, R. Deane, S. A. Goldman et al., “A paravascular pathway facilitates csf flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β𝛽\betaitalic_β,” Sci. Transl. Med., vol. 4, no. 147, p. 147ra111, 2012.
- Y. Li, H. Han, K. Shi, D. Cui, J. Yang, I. L. Alberts, L. Yuan, G. Zhao, R. Wang, X. Cai, and Z. Teng, “The mechanism of downregulated interstitial fluid drainage following neuronal excitation,” Aging Dis., vol. 11, no. 6, p. 1407, 2020.
- Y. Lu, K. Yang, K. Zhou, B. Pang, G. Wang, Y. Ding, Q. Zhang, H. Han, J. Tian, C. Li, and Q. Ren, “An integrated quad-modality molecular imaging system for small animals,” J. Nucl. Med., vol. 55, no. 8, pp. 1375–1379, 2014.
- H. Wiig and M. A. Swartz, “Interstitial fluid and lymph formation and transport: physiological regulation and roles in inflammation and cancer,” Physiol. Rev., vol. 92, no. 3, pp. 1005–1060, 2012.
- Z. Gu, H. Chen, H. Zhao, W. Yang, Y. Song, X. Li, Y. Wang, D. Du, H. Liao, W. Pan et al., “New insight into brain disease therapy: nanomedicines-crossing blood–brain barrier and extracellular space for drug delivery,” Expert Opin. Drug Deliv., vol. 19, no. 12, pp. 1618–1635, 2022.
- N. Zhou, T. Xu, Y. Bai, S. Prativa, J.-Z. Xu, K. Li, H.-B. Han, and J.-H. Yan, “Protective effects of urinary trypsin inhibitor on vascular permeability following subarachnoid hemorrhage in a rat model,” CNS Neurosci. Ther., vol. 19, no. 9, pp. 659–666, 2013.
- S. D. Ferguson, K. Foster, and B. Yamini, “Convection-enhanced delivery for treatment of brain tumors,” Expert Rev. Anticancer Ther, vol. 7, no. 12 Supp1, pp. S79–S85, 2007.
- H. Han, Z. Xia, H. Chen, C. Hou, and W. Li, “Simple diffusion delivery via brain interstitial route for the treatment of cerebral ischemia,” Sci. China-Life Sci., vol. 54, no. 3, pp. 235–239, 2011.
- Y. Gao, H. Han, J. Du, Q. He, Y. Jia, J. Yan, H. Dai, B. Cui, J. Yang, X. Wei et al., “Early changes to the extracellular space in the hippocampus under simulated microgravity conditions,” Sci. China-Life Sci., vol. 65, no. 3, pp. 604–617, 2022.
- H. Han, C. Shi, Y. Fu, L. Zuo, K. Lee, Q. He, and H. Han, “A novel mri tracer-based method for measuring water diffusion in the extracellular space of the rat brain,” IEEE J. Biomed. Health Inform., vol. 18, no. 3, pp. 978–983, 2014.
- E. Vendel, V. Rottschäfer, and E. C. de Lange, “The need for mathematical modelling of spatial drug distribution within the brain,” Fluids Barriers CNS, vol. 16, p. 12, 2019.
- J. Iliff and M. Simon, “Crosstalk proposal: The glymphatic system supports convective exchange of cerebrospinal fluid and brain interstitial fluid that is mediated by perivascular aquaporin-4,” J. Physiol.-London, vol. 597, no. 17, pp. 4417–4419, 2019.
- A. J. Smith, X. Yao, J. A. Dix, B.-J. Jin, and A. S. Verkman, “Test of the’glymphatic’hypothesis demonstrates diffusive and aquaporin-4-independent solute transport in rodent brain parenchyma,” eLife, vol. 6, p. e27679, 2017.
- J. J. Iliff, M. J. Chen, B. A. Plog, D. M. Zeppenfeld, M. Soltero, L. Yang, I. Singh, R. Deane, and M. Nedergaard, “Impairment of glymphatic pathway function promotes tau pathology after traumatic brain injury,” J. Neurosci., vol. 34, no. 49, pp. 16 180–16 193, 2014.
- A. Wang, R. Wang, D. Cui, X. Huang, L. Yuan, H. Liu, Y. Fu, L. Liang, W. Wang, Q. He et al., “The drainage of interstitial fluid in the deep brain is controlled by the integrity of myelination,” Aging Dis., vol. 10, no. 5, pp. 937–948, 2019.
- R. Elkin, S. Nadeem, E. Haber, K. Steklova, H. Lee, H. Benveniste, and A. Tannenbaum, “Glymphvis: visualizing glymphatic transport pathways using regularized optimal transport,” in 21st Medical Image Computing and Computer Assisted Intervention (MICCAI 2018), Proceedings, Part I, Spain, Sep. 2018, pp. 844–852.
- S. Koundal, R. Elkin, S. Nadeem, Y. Xue, S. Constantinou, S. Sanggaard, X. Liu, B. Monte, F. Xu, W. Van Nostrand et al., “Optimal mass transport with lagrangian workflow reveals advective and diffusion driven solute transport in the glymphatic system,” Sci Rep, vol. 10, no. 1, p. 1990, 2020.
- F. Liu, P. Zhuang, V. Anh, I. Turner, and K. Burrage, “Stability and convergence of the difference methods for the space–time fractional advection–diffusion equation,” Appl. Math. Comput., vol. 191, no. 1, pp. 12–20, 2007.
- W. Wang, Q. He, J. Hou, D. Chui, M. Gao, A. Wang, H. Han, and H. Liu, “Stimulation modeling on three-dimensional anisotropic diffusion of mri tracer in the brain interstitial space,” Front. Neuroinformatics, vol. 13, p. 6, 2019.
- J.-D. Benamou and Y. Brenier, “A computational fluid mechanics solution to the monge-kantorovich mass transfer problem,” Numer. Math., vol. 84, no. 3, pp. 375–393, 2000.
- C. Fan, F. Tian, X. Zhao, Y. Sun, X. Yang, H. Han, and X. Pu, “The effect of thymoquinone on the characteristics of the brain extracellular space in transient middle cerebral artery occlusion rats,” Biol. Pharm. Bull., vol. 43, no. 9, pp. 1306–1314, 2020.
- V. Ratner, Y. Gao, H. Lee, R. Elkin, M. Nedergaard, H. Benveniste, and A. Tannenbaum, “Cerebrospinal and interstitial fluid transport via the glymphatic pathway modeled by optimal mass transport,” Neuroimage, vol. 152, pp. 530–537, 2017.
- V. Ratner, L. Zhu, I. Kolesov, M. Nedergaard, H. Benveniste, and A. Tannenbaum, “Optimal-mass-transfer-based estimation of glymphatic transport in living brain,” in Medical Imaging 2015: Image Processing, vol. 9413. SPIE, 2015, p. 94131J.
- X. Chen, A. P. Tran, R. Elkin, H. Benveniste, and A. R. Tannenbaum, “Visualizing fluid flows via regularized optimal mass transport with applications to neuroscience,” J. Sci. Comput., vol. 97, no. 2, p. 26, 2023.
- X. Chen, X. Liu, S. Koundal, R. Elkin, X. Zhu, B. Monte, F. Xu, F. Dai, M. Pedram, H. Lee et al., “Cerebral amyloid angiopathy is associated with glymphatic transport reduction and time-delayed solute drainage along the neck arteries,” Nature Aging, vol. 2, no. 3, pp. 214–223, 2022.
- L. M. Valnes, S. K. Mitusch, G. Ringstad, P. K. Eide, S. W. Funke, and K.-A. Mardal, “Apparent diffusion coefficient estimates based on 24 hours tracer movement support glymphatic transport in human cerebral cortex,” Sci Rep, vol. 10, no. 1, p. 9176, 2020.
- H. Li, H. Zhao, and H. Li, “Neural-response-based extreme learning machine for image classification,” IEEE Trans. Neural Netw. Learn. Syst., vol. 30, no. 2, pp. 539–552, 2019.
- M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations,” J. Comput. Phys., vol. 378, pp. 686–707, 2019.
- M. Raissi and G. E. Karniadakis, “Hidden physics models: Machine learning of nonlinear partial differential equations,” J. Comput. Phys., vol. 357, pp. 125–141, 2018.
- Q. Yang, Z. Wang, K. Guo, C. Cai, and X. Qu, “Physics-driven synthetic data learning for biomedical magnetic resonance: The imaging physics-based data synthesis paradigm for artificial intelligence,” IEEE Signal Process. Mag., vol. 40, no. 2, pp. 129–140, 2023.
- Q. Cai, L. Zhu, J. Zhou, C. Qian, D. Guo, and X. Qu, “Bloch equation enables physics-informed neural network in parametric magnetic resonance imaging,” arXiv preprint arXiv:2309.11763, 2023.
- T. Kapoor, H. Wang, A. Nunez, and R. Dollevoet, “Physics-informed neural networks for solving forward and inverse problems in complex beam systems,” IEEE Trans. Neural Netw. Learn. Syst., 2023, doi: 10.1109/TNNLS.2023.3310585.
- Z. Cui, T. Gao, K. Talamadupula, and Q. Ji, “Knowledge-augmented deep learning and its applications: A survey,” IEEE Trans. Neural Netw. Learn. Syst., 2023, doi: 10.1109/TNNLS.2023.3338619.
- B. Zapf, J. Haubner, M. Kuchta, G. Ringstad, P. K. Eide, and K.-A. Mardal, “Investigating molecular transport in the human brain from mri with physics-informed neural networks,” Sci Rep, vol. 12, no. 1, p. 15475, 2022.
- R. L. van Herten, A. Chiribiri, M. Breeuwer, M. Veta, and C. M. Scannell, “Physics-informed neural networks for myocardial perfusion mri quantification,” Med. Image Anal., vol. 78, p. 102399, 2022.
- M. Sarabian, H. Babaee, and K. Laksari, “Physics-informed neural networks for brain hemodynamic predictions using medical imaging,” IEEE Trans. Med. Imaging, vol. 41, no. 9, pp. 2285–2303, 2022.
- C. Oszkinat, S. E. Luczak, and I. Rosen, “Uncertainty quantification in estimating blood alcohol concentration from transdermal alcohol level with physics-informed neural networks,” IEEE Trans. Neural Netw. Learn. Syst., vol. 34, no. 10, pp. 8094–8101, 2023.
- X. Zhang, B. Mao, Y. Che, J. Kang, M. Luo, A. Qiao, Y. Liu, H. Anzai, M. Ohta, Y. Guo et al., “Physics-informed neural networks (pinns) for 4d hemodynamics prediction: An investigation of optimal framework based on vascular morphology,” Comput. Biol. Med., vol. 164, p. 107287, 2023.
- P. Moser, W. Fenz, S. Thumfart, I. Ganitzer, and M. Giretzlehner, “Modeling of 3d blood flows with physics-informed neural networks: Comparison of network architectures,” Fluids, vol. 8, no. 2, p. 46, 2023.
- D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014.
- A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An imperative style, high-performance deep learning library,” Advances in neural information processing systems, vol. 32, 2019.
- M. Huysmans and A. Dassargues, “Review of the use of péclet numbers to determine the relative importance of advection and diffusion in low permeability environments,” Hydrogeol. J., vol. 13, no. 5–6, pp. 895–904, 2005.
- C. Nicholson and S. Hrabětová, “Brain extracellular space: the final frontier of neuroscience,” Biophys. J., vol. 113, no. 10, pp. 2133–2142, 2017.