The shape of the front of multidimensional branching Brownian motion (2401.12431v2)
Abstract: We study the shape of the outer envelope of a branching Brownian motion (BBM) in $\mathbb{R}d$, $d\geq 2$. We focus on the extremal particles: those whose norm is within $O(1)$ of the maximal norm amongst the particles alive at time $t$. Our main result is a scaling limit, with exponent $3/2$, for the outer-envelope of the BBM around each extremal particle (the "front"); the scaling limit is a continuous random surface given explicitly in terms of a Bessel(3) process. Towards this end, we introduce a point process that captures the full landscape around each extremal particle and show convergence in distribution to an explicit point process. This complements the global description of the extremal process given in Berestycki et. al. (Ann. Probab. 52 (2024), no. 3, 955-982), where the local behavior at directions transversal to the radial component of the extremal particles is not addressed.
- Branching Brownian motion seen from its tip. Probab. Theory Related Fields, 157(1-2):405–451, 2013.
- L.-P. Arguin. Extrema of log-correlated random variables principles and examples. In Advances in disordered systems, random processes and some applications, pages 166–204. Cambridge Univ. Press, Cambridge, 2017.
- The extremal process of branching Brownian motion. Probab. Theory Related Fields, 157(3-4):535–574, 2013.
- Maxima of log-correlated fields: some recent developments. J. Phys. A, 55(5):Paper No. 053001, 76, 2022.
- J. Berestycki. Topics on branching Brownian motion. 2014. Notes from EBP18, https://www.stats.ox.ac.uk/~berestyc/Articles/EBP18_v2.pdf.
- The extremal point process of branching brownian motion in ℝdsuperscriptℝ𝑑\mathbb{R}^{d}blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT. 2021. Preprint, arXiv:2112.08407. To appear, Ann. Probab.
- N. Berestycki and L. Z. Zhao. The shape of multidimensional Brunet-Derrida particle systems. Ann. Appl. Probab., 28(2):651–687, 2018.
- J. D. Biggins. The asymptotic shape of the branching random walk. Adv. in Appl. Probab., 10(1):62–84, 1978.
- M. Biskup. Extrema of the two-dimensional discrete Gaussian free field. In Random graphs, phase transitions, and the Gaussian free field, volume 304 of Springer Proc. Math. Stat., pages 163–407. Springer, Cham, 2020.
- M. Biskup and O. Louidor. Full extremal process, cluster law and freezing for the two-dimensional discrete Gaussian free field. Adv. Math., 330:589–687, 2018.
- A. Bovier. Gaussian processes on trees, volume 163 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2017.
- A. Bovier and L. Hartung. Extended convergence of the extremal process of branching brownian motion. Ann. Appl. Probab., 27(3):1756–1777, June 2017.
- M. Bramson. Convergence of solutions of the Kolmogorov equation to travelling waves. Mem. Amer. Math. Soc., 44(285):iv+190, 1983.
- More on the structure of extreme level sets in branching Brownian motion. Electron. Commun. Probab., 26:Paper No. 2, 14, 2021.
- J. Gärtner. Location of wave fronts for the multi-dimensional KPP equation and Brownian first exit densities. Mathematische Nachrichten, 105(1):317–351, 1982.
- The many-to-few lemma and multiple spines. Ann. Inst. Henri Poincaré Probab. Stat., 53(1):226–242, 2017.
- Branching Markov processes I–III. J. Math. Kyoto Univ., 8,8,9:233–278, 365–410, 95–160, 1968,1969.
- The maximum of branching Brownian motion in ℝdsuperscriptℝ𝑑{\mathbb{R}^{d}}blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT. Ann. Appl. Probab., 33(2):1315–1368, 2023.
- S. P. Lalley and T. Sellke. A conditional limit theorem for the frontier of a branching Brownian motion. Ann. Probab., 15(3):1052–1061, 1987.
- B. Mallein. Maximal displacement of d𝑑ditalic_d-dimensional branching Brownian motion. Electron. Commun. Probab., 20:no. 76, 12, 2015.
- B. Mallein. Genealogy of the extremal process of the branching random walk. ALEA, Lat. Am. J. Probab. Math. Stat., 15(2):1065–1087, 2018.
- H. P. McKean. Application of Brownian motion to the equation of Kolmogorov-Petrovskii-Piskunov. Commun. Pure Appl. Math., 28(3):323–331, 1975.
- Sharp large time behaviour in n𝑛nitalic_n-dimensional Fisher-KPP equations. Discrete Contin. Dyn. Syst., 39(12):7265–7290, 2019.
- L. Ryzhik. Lausanne lecture notes: Branching Brownian motion, parabolic equations and travelling waves. 2023. https://math.stanford.edu/~ryzhik/lausanne-lectures-23.pdf.
- A. V. Skorohod. Branching diffusion processes. Teor. Verojatnost. i Primenen., 9:492–497, 1964.
- Derivative martingale of the branching Brownian motion in dimension d≥1𝑑1d\geq 1italic_d ≥ 1. Ann. Inst. Henri Poincaré Probab. Stat., 57(3):1786–1810, 2021.
- O. Zeitouni. Branching random walks and Gaussian fields. In Probability and statistical physics in St. Petersburg, volume 91 of Proc. Sympos. Pure Math., pages 437–471. Amer. Math. Soc., Providence, RI, 2016.