Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Order Conditions for Nonlinearly Partitioned Runge-Kutta Methods (2401.12427v1)

Published 23 Jan 2024 in math.NA and cs.NA

Abstract: Recently a new class of nonlinearly partitioned Runge-Kutta (NPRK) methods was proposed for nonlinearly partitioned systems of ordinary differential equations, $y' = F(y,y)$. The target class of problems are ones in which different scales, stiffnesses, or physics are coupled in a nonlinear way, wherein the desired partition cannot be written in a classical additive or component-wise fashion. Here we use rooted-tree analysis to derive full order conditions for NPRK$_M$ methods, where $M$ denotes the number of nonlinear partitions. Due to the nonlinear coupling and thereby mixed product differentials, it turns out the standard node-colored rooted-tree analysis used in analyzing ODE integrators does not naturally apply. Instead we develop a new edge-colored rooted-tree framework to address the nonlinear coupling. The resulting order conditions are enumerated, provided directly for up to 4th order with $M=2$ and 3rd-order with $M=3$, and related to existing order conditions of additive and partitioned RK methods.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. Symplectic methods based on decompositions. SIAM Journal on Numerical Analysis, 34(5):1926–1947, 1997.
  2. Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations. Applied Numerical Mathematics, 25(2-3):151–167, 1997. ISSN 0168-9274. doi: 10.1016/s0168-9274(97)00056-1.
  3. High Order Semi-implicit WENO Schemes for All-Mach Full Euler System of Gas Dynamics. SIAM Journal on Scientific Computing, 44(2):B368–B394, 2022. ISSN 1064-8275. doi: 10.1137/21m1424433.
  4. High order semi-implicit schemes for viscous compressible flows in 3D. Applied Mathematics and Computation, 434:127457, 2022. ISSN 0096-3003. doi: 10.1016/j.amc.2022.127457.
  5. A new class of Runge-Kutta methods for nonlinearly partitioned systems. In review, 2023.
  6. Henri Cartan. Differential Calculus. Kershaw Publishing Company, 1971. ISBN 0-395-12033-0.
  7. Implicit-Explicit Multirate Infinitesimal GARK Methods. SIAM Journal on Scientific Computing, 43(5):A3082–A3113, 2021. ISSN 1064-8275. doi: 10.1137/20m1354349.
  8. Additive methods for the numerical solution of ordinary differential equations. Mathematics of Computation, 35(152):1159–1172, 1980.
  9. Loïc Foissy. Algebraic Structures on Typed Decorated Rooted Trees. SIGMA, 17(086):28, 2021. doi: 10.3842/SIGMA.2021.086.
  10. Multirate linearly-implicit GARK schemes. BIT Numerical Mathematics, pages 1–33, 2021. ISSN 0006-3835. doi: 10.1007/s10543-021-00898-5.
  11. Solving Ordinary Differential Equations II, Stiff and Differential-Algebraic Problems. Springer Series in Computational Mathematics. Springer Berlin Heidelberg, 1996. ISBN 9783642052200. doi: 10.1007/978-3-642-05221-7.
  12. Solving Ordinary Differential Equations I, Nonstiff Problems. Springer Series in Computational Mathematics. 1993. ISBN 9783540566700. doi: 10.1007/978-3-540-78862-1.
  13. Geometric Numerical Integration, Structure-Preserving Algorithms for Ordinary Differential Equations. 2002. doi: 10.1007/978-3-662-05018-7.
  14. Additive Runge–Kutta schemes for convection–diffusion–reaction equations. Applied Numerical Mathematics, 44(1-2):139–181, 2003. ISSN 0168-9274. doi: 10.1016/s0168-9274(02)00138-1.
  15. Higher-order additive Runge–Kutta schemes for ordinary differential equations. Applied Numerical Mathematics, 136:183–205, 2019. ISSN 0168-9274. doi: 10.1016/j.apnum.2018.10.007.
  16. Computing with B-series. ACM Transactions on Mathematical Software, 49(2):1–23, 2023. doi: 10.1145/3573384.
  17. Hendrik Ranocha and contributors. RootedTrees.jl: A collection of functionality around rooted trees to generate order conditions for Runge-Kutta methods in Julia for differential equations and scientific machine learning (SciMl). https://github.com/SciML/RootedTrees.jl, 05 2019.
  18. Coupled Multirate Infinitesimal GARK Schemes for Stiff Systems with Multiple Time Scales. SIAM Journal on Scientific Computing, 42(3):A1609–A1638, 2020. ISSN 1064-8275. doi: 10.1137/19m1266952.
  19. Implicit Multirate GARK Methods. Journal of Scientific Computing, 87(1):4, 2021. ISSN 0885-7474. doi: 10.1007/s10915-020-01400-z.
  20. Adrian Sandu. A Class of Multirate Infinitesimal GARK Methods. SIAM Journal on Numerical Analysis, 57(5):2300–2327, 2019. ISSN 0036-1429. doi: 10.1137/18m1205492.
  21. A Generalized-Structure Approach to Additive Runge–Kutta Methods. SIAM Journal on Numerical Analysis, 53(1):17–42, 2015. ISSN 0036-1429. doi: 10.1137/130943224.
  22. Linearly implicit GARK schemes. Applied Numerical Mathematics, 161:286–310, 2021. ISSN 0168-9274. doi: 10.1016/j.apnum.2020.11.014.
  23. Design of High-Order Decoupled Multirate GARK Schemes. SIAM Journal on Scientific Computing, 41(2):A816–A847, 2019. ISSN 1064-8275. doi: 10.1137/18m1182875.
  24. Implicit-explicit Runge-Kutta for radiation hydrodynamics I: gray diffusion. arXiv preprint arXiv:2305.05452, 2023.
  25. One-sweep moment-based semi-implicit-explicit integration for gray thermal radiation transport. (in review), 2024.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com